

COMPOSIÇÃO QUÍMICA E ATIVIDADE ANTIFÚNGICA DO ÓLEO ESSENCIAL DE Eucalyptus dunnii E DO 1,8-CINEOL

DA SILVA, Rodrigo Borges (IC);¹ DO NASCIMENTO, José Edmilson R.(PG);² JACOB, Raquel Guimarães (PQ);³ NASCENTE, Patrícia S⁴

^{1,2,3} Universidade Federal de Pelotas, LASOL-CCQFA, RS, Brasil. rodrigobs_3@hotmail.com

⁴ Universidade Federal de Pelotas, Instituto de Biologia - Departamento de Microbiologia e
Parasitologia, RS, Brasil.

1 INTRODUÇÃO

O uso de matéria prima de fonte renovável tem sido foco de nossos estudos. É necessário encontrar neste sentido, novas alternativas para as matérias primas que a indústria utiliza e uma ferramenta que tem sido utilizada é o uso de fontes renováveis (biomassa) (ANASTAS; WARNER, 1998). Portanto, tem se tornado de grande interesse a utilização dos galhos e folhas, os quais permanecem no campo constituindo-se em resíduos agrícolas, para produção de óleos essenciais, que contém vários compostos, os quais podem ser aproveitados.

Percebendo-se a necessidade de desenvolver métodos alternativos a serem aplicados a utilização de plantas medicinais com potencial antibacteriano ganha um espaço cada vez maior na medicina veterinária objetivando reduzir o impacto e o uso de medicamentos de forma exagerada e mantendo a integridade do animal (COSTA *et al.*, 1985). Os óleos essenciais fornecem uma grande variedade de substâncias que possuem toxicidade contra uma grande variedade de microorganismos, incluindo bactérias e fungos (FIORI *et al.*, 2000).

A crescente importância clínica atribuída às micoses em animais domésticos, aliada às dificuldades representadas pelo tempo de administração, toxicidade e alto custo dos antifúngicos, pesquisas têm sido realizadas na tentativa de se obter outras opções terapêuticas. Portanto, o presente trabalho teve por objetivo realizar um estudo da constituição química do óleo essencial de *Eucalipto dunnii* e verificar a sua atividade antifúngica contra diferentes leveduras de importância em veterinária. Bem como, avaliar a atividade antifúngica do 1,8-cineol, que é o principal componente do óleo *E. dunnii*.

2 METODOLOGIA (MATERIAL E MÉTODOS)

Neste estudo foram utilizadas as folhas da espécis de *Eucalyptus dunnii*. Estas foram coletadas em plantas com idade de 12 meses na Metade Sul do estado do Rio Grande, no período da primavera de 2009. O óleo essencial foi extraído por arraste a vapor, utilizando um Destilador Linax — D1. Os óleos foram avaliados quanto à composição química utilizando o equipamento CG/MS (Shimadzu, QP2010 Plus) e a identificação dos principais componentes foi feita através da comparação dos seus espectros de massas e índices de retenção com os existentes no banco de dados do software GC solution.

A atividade antifúngica foi testada frente às leveduras: Candida albicans (LMI10), C. globosa (LMI14), C. lipolytica (LMI13), C. guilhermondii (LMI12), Geotrichum sp. (LMI27), Cryptococcus laurentii (LMI26), Trichosporon asahii (LMI28) e Rhodotorulla sp. (LMI31). O antifungigrama foi realizado através da técnica de microdiluição em caldo para observação da Concentração Inibitória Mínima (CIM),

com base do CLSI (2008) adaptada a um fitofármaco. A Concentração Fungicida Mínima (CFM) foi verificada através da semeadura de uma alíquota de 0,05uL de cada poço sem crescimento em meio de cultivo ágar Sabouraud dextrose e levados a estufa por 24h.

3 RESULTADOS E DISCUSSÃO

Os constituintes do óleo de *Eucalyptus dunni* estão demonstrados na Tabela 1. Estes constituintes foram identificados (%): 1,8-cineol, 42,75; -pineno, 20,66; -terpineol, 8,47; Limoneno, 7,18; 1H-Cycloprop[e]azulene, 4,89. Em relação ao teste de atividade antifúngica do óleo testado, a inibição frente ao crescimento dos fungos *C. albicans, Geotrichum sp.* e *C. laurentii* não foi significativa. As CIMs variaram de acordo as leveduras analisadas. *Rhodotorulla sp.* e *C. lipolytica* apresentaram CMIs de 17,31mg/mL, *C. globosa* e*Trichosporon asahii* apresentaram CIMs de 8,65mg/mL e a *C. guilhermondii* apresentou CMI de 4,33 mg/mL. As CFM mantiveram-se nos mesmos valores.

Dando continuidade ao estudo, testou-se a atividade do 1,8-cineol, componente majoritário de *E. dunnii*, frente ao crescimento das leveduras descritas anteriormente. Observando-se dessa forma, que o mesmo não apresentou inibição representativa em relação às leveduras testadas.

Tabela 1 - Constituição química do óleo E. dunnii no período da primavera

Pico	Composto	Temp. de	Conc.	FM
		Ret. (min)	(%)	
1	-pinene	4.664	20.66	C ₁₀ H ₁₆
2	-pinene	5.595	0.64	$C_{10}H_{16}$
3	-Myrcene	5.856	0.56	$C_{10}H_{16}$
4	-phenlandrene	6.226	0.31	$C_{10}H_{16}$
5	o-Cymene	6.735	4.26	$C_{10}H_{14}$
6	Limonene	6.854	7.18	$C_{10}H_{16}$
7	1,8- Cineole	6.936	42.75	$C_{10}H_{18}O$
8	- ocimene	7.051	2.72	$C_{10}H_{16}$
9	- ocimene	7.339	0.30	$C_{10}H_{16}$
10	- terpinene	7.666	3.18	$C_{10}H_{16}$
11	4-Terpineol	11.259	0.38	$C_{10}H_{18}O$
12	-Terpineol	11.675	8.47	$C_{10}H_{18}O$
13	Camphene	16.764	1.01	$C_{10}H_{16}$
14	1H-Cycloprop[e]azulene	18.699	0.38	$C_{15}H_{24}$
15	1H-Cycloprop[e]azulene	19.601	4.89	$C_{15}H_{24}$
16	1H-Cycloprop[e]azulene	20.276	0.76	$C_{15}H_{24}$

17	1H-Cycloprop[e]azulene	23.932	1.55	C ₁₅ H ₂₄
Total			100	

4 CONCLUSÃO

A partir dos resultados obtidos neste estudo, conclui-se que o óleo essencial de *E. dunnii* apresenta atividade antifúngica contra uma variedade de leveduras testadas. Neste sentido, estudos serão realizados para avaliar o potencial deste óleo para o tratamento de doenças na área veterinária. No que se refere ao 1,8-cineol, não apresentou atividade significativa frente às leveduras quando testado isoladamente. Concluindo desta forma, que o 1,8-cineol sozinho não foi o principal responsável pelo potencial inibitório do óleo essencial de *E. dunni* contra os fungos testados.

5 REFERÊNCIAS

ANASTAS, P.T.; WARNER, J. **Green Chemistry:Theory and Practice**; Oxford University Press: Oxford, 1998;

FIORI, A.C.G.; SCHWAN-Estrada, K.R.F.; STANGARLIN, J.R.; VIDA, J.B., SCAPIM, C.A.; CRUZ, M.E.S.; PASCHOLATI, S.F. **Journal of Phytopathology**, 2000, *148*, 483 - 487.

CLSI - Clinical And Laboratory Standars Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-third edition. CLSI document M27-A3. 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute, 2008.

COSTA, E.O.; COUTINHO, S.D.; CASTILHO W.; TEIXEIRA, C.M. Sensibilidade a antibióticos e quimioterápicos de bactérias isoladas de mastite bovina. **Pesquisa veterinária brasileira**, Rio de Janeiro, v.5, n.2, p.65-69, 1985.