

EXPRESSÃO DE CARACTERES LIGADOS A QUALIDADE INDUSTRIAL DA AVEIA BRANCA SOB FONTES E DOSES DE N EM DIFERENTES RESÍDUOS CULTURAIS

<u>UBESSI, Cassiane</u>¹; PINTO, Fernando Bilibio¹; SILVA, Adair José¹; OLIVEIRA, Juliana Moraes de¹; SILVA, José Antonio Gonzalez da¹

¹Universidade Regional do Noroeste do Estado do Rio Grande do Sul/Departamento de Estudos Agrários/DEAg/UNIJUI, Curso de Agronomia. cassi.ubessi@yahoo.com.br

1 INTRODUÇÃO

O interesse por alimentos com maior valor nutritivo é crescente, e a aveia (*Avena sativa* L.) destaca-se entre os demais cereais (GATTO, 2005), isso se deve às suas características diferenciadas (FEDERIZZI & ALMEIDA, 1998) que possibilita uma utilização variada no desenvolvimento de produtos. Porém, o grão deve atender um padrão de qualidade quando destinado à indústria para o preparo de alimentos (BOTHONA & MILACH, 1998). Barata *et al.* (2001) cita que para o desenvolvimento de novos produtos de aveia, a principal preocupação está em obter um grão adequado ao consumo humano. É necessário combinar os processos tecnológicos que induzem as modificações físico-químicas, funcionais e nutricionais, a fim de que se obtenham produtos adequados às exigências do mercado consumidor. Para obter a qualidade de grão desejada há uma combinação de fatores, tais como: a adubação nitrogenada, com ênfase nas diferentes doses e fontes; e os resíduos culturais.

Segundo Garcia et al. (2007) o nitrogênio se caracteriza como o nutriente mais importante para a produção vegetal devido às quantidades requeridas pelos cultivos e a frequência com que se observam deficiências em solos agrícolas. As fontes de adubação nitrogenada sintéticas mais conhecidas são o sulfato de amônio. uréia e nitrato de amônia, que são utilizados na agricultura para o suprimento de nutrientes essenciais no desenvolvimento das plantas e para buscar incremento dos rendimentos a campo (WENTZ, 2010). No entanto, o nitrogênio também pode ser disponibilizado pelo resíduo cultural, e influencia diretamente sobre a adubação nitrogenada. Com a decomposição do material orgânico, o nitrogênio contido é convertido da forma orgânica (ligado aos compostos orgânicos) para a forma mineral, podendo assim, ser absorvido pela planta. O teor de nitrogênio no solo é variável de acordo com a quantidade de matéria orgânica e cultura antecessora (RAIJ, 1981). Assim, o objetivo do presente trabalho foi analisar a expressão dos caracteres que conferem a qualidade industrial do grão de aveia, sob diferentes doses e fontes nitrogenadas em distintos sistemas de cultivo com base no tipo de precedente cultural.

2 METODOLOGIA (MATERIAL E MÉTODOS)

O trabalho foi conduzido no Instituto Regional de Desenvolvimento Rural (IRDeR), pertencente ao Departamento de Estudos Agrários da UNIJUÍ, no município de Augusto Pestana - RS, durante o ano de 2010. O solo na área experimental é classificado como Latossolo Vermelho Distroférrico Típico. O delineamento experimental utilizado foi de blocos casualisados com quatro

repetições, onde cada bloco foi representado por doze tratamentos, incluindo uma parcela padrão e resultando em um total de 52 parcelas de 5m^2 . O experimento foi levado a campo dentro da época indicada para a região de ljuí (15 de maio a 30 de junho), e a semeadura foi realizada manualmente, na densidade de 300 sementes por m^2 da cultivar URS 22, e um espaçamento de 0,20 m entre linhas, resultando em 60 sementes por metro linear.

A adubação e calagem obedeceram às indicações técnicas para a cultura da aveia. Os fatores de tratamento foram compostos pelas fontes de nitrogênio conforme seguem: Uréia = 45%N; Nitrato de Amônia = 32%N; Sulfato de Amônio = 32%N; ½ Uréia + ½ Nitrato de Amônio; ½ Uréia + ½ Sulfato de Amônio; ½ Nitrato de Amônio + Sulfato do Amônio. Além das fontes, foram utilizadas diferentes doses de nitrogênio, na área do resíduo cultural da soja, doses de 0, 30 e 60 kg de N ha⁻¹ e no resíduo cultural do milho doses de 0, 40 e 80 kg de N ha⁻¹. Como variáveis analisadas, citam-se: Rendimento de grãos (RG, kg ha⁻¹); Massa de Mil Grãos (MMG, gramas); Peso do Hectolitro (PH, kg hl⁻¹); Grãos maiores que 2 mm (MA); Grãos menores que 2 mm (ME); Relação de grãos maiores que 2 mm (RMA, em porcentagem); % de Cariopse (%CAR); Rendimento de grãos industrial (RGI). Os dados foram submetidos à análise de variância e teste de médias por Scott & Knott, utilizando o programa computacional Genes (CRUZ, 2001).

3 RESULTADOS E DISCUSSÃO

A Tabela 1 demonstra que os resíduos culturais, soja e milho, não apresentam diferenças em relação às fontes de nitrogênio para os caracteres de qualidade de grão em aveia. O destaque no resíduo cultural de soja é para as doses, que ocasionaram diferença nos seguintes componentes da qualidade industrial o PH e RI, bem como o RG. O resultado obtido para o PH não se repete no ambiente milho, onde são observadas maiores alterações, também ocasionadas pelas doses, com influência sobre RG, MA, ME, RMA e RI. Portanto, devido aos resultados obtidos ressalta-se que a menor relação C/N da soja tenha permitido maior liberação de nutrientes contida na palhada, assim, favorecendo em expressar mais efetivamente tal comportamento, e conseqüentemente, promoveu mais estabilidade no ambiente de cultivo.

Tabela 1. Resumo da análise de variância para os componentes da qualidade industrial da aveia branca sob condições de diferentes doses e fontes de nitrogênio em resíduo de soja e milho.

		Quadrado Médio SOJA									
	•	RG 1	PH (kg hl	MMG	MA	ME	RMA	PG	PC	CAR	RI (kg.ha ⁻
FV	GL	(kg ha ⁻¹)	1)	(g)	(n)	(n)	(%)	(g)	(g)	(%))
Bloco	3	104723	8,02	7,92	20,46	20,46	0,002	0,017	0,021	0,005	17841
Doses	2	9983075*	125,01*	7,85	138,06	138,06	0,013	0,006	0,002	0,001	85287*
Fonte s	5	44106	6,34	3,14	104,06	104,06	0,010	0,002	0,003	0,002	14062
DXF	10	24550	6,74	3,19	77,99	77,99	0,007	0,002	0,002	0,001	13564
Erro	51	12740	2,07	2,78	12,22	12,22	0,001	0,004	0,004	0,001	2982
Total	71										
MGeral		1631,85	43,82	27,99	53,06	46,93	0,53	1,08	0,66	0,61	524,7
CV(%)		6,91	3,28	5,95	6,58	7,44	6,60	6,02	9,91	5,61	10,4

		Quadrado Médio MILHO									
FV	GL	RG (kg ha ⁻¹)	PH (kg hl ⁻¹)	MMG (g)	MA (n)	ME (n)	RMA (%)	PG (g)	PC (g)	CAR (%)	RI (kg.ha ⁻
Bloco	3	2454	7,39	25,78	12,54	12,54	0,001	0,012	0,019	0,003	1620
Doses	2	1074965*	342,6*	11,98	567,66*	567,66*	0,057*	0,015	0,005	0,002	12107*
Fonte s	5	17399	3,88	5,22	27,64	27,64	0,003	0,005	0,005	0,001	6755
DXF	10	28575	6,27	2,74	51,52	51,52	0,005	0,005	0,004	0,001	7546
Erro	51	14913	3,32	1,85	17,66	17,66	0,002	0,004	0,002	0,001	2614
Total	71										
MGeral		1342,07	42,54	27,06	46,6	53,39	0,46	1,08	0,69	0,63	408,17
CV(%)		9,09	4,28	5,02	9,01	7,87	9,02	5,89	7,44	3,93	12,52

*Significativo a 5% de probabilidade; QM: Quadrado Médio; CV: Coeficiente de variação; GL: Grau de liberdade do resíduo; RG: Rendimento de grãos; PH: Peso hectolitro; MMG: Massa de Mil grãos; MA: Grãos >2mm; ME: Grãos<2mm; RMA: Relação de grãos >2mm; PG: Peso de grãos; PC: Peso de cariopse; CAR: Percentual de cariopse; RI: Rendimento de Grãos Industrial.

Na Tabela 2 constatou-se através do teste de médias que as doses 30 e 60 kg N ha⁻¹ para o RG, PH e RI não diferiram entre si, mas sim da dose padrão, no resíduo de soja. Sobre o milho o PH também só foi alterado na condição sem adubação frente às demais doses (40 e 80 kg N ha⁻¹). A maior produção foi obtida na dose mais elevada de N (80 kg N ha⁻¹), fato também observado para MA, RMA e RI. Kolchinski (2004) observou que às diferentes doses de adubação não afetaram o rendimento de grãos industrial. Por outro lado, Wagner (2009) destacou que as doses tanto para o milho quanto para a soja apenas mostraram diferença quando comparadas com a dose padrão, sendo que neste trabalho, tal comportamento somente foi observado no ambiente soja.

Tabela 2. Teste de médias para os componentes ligados a qualidade industrial da aveia branca sob condições de diferentes doses de nitrogênio em resíduo de soja e milho

11111110											
	Variáveis / SOJA										
Doses (kg ha ⁻¹)	RG (kg ha ⁻¹)	PH (kg hl ⁻¹)	MMG (g)	MA (n)	ME (n)	RMA (%)	PG (g)	PC (g)	CAR (%)	RI (kg ha ⁻¹)	
0	892b	41,3b	28,6a	55,6a	44a	55a	1,09a	0,67a	0,7a	307b	
30	1920a	44,5a	27,6a	52,5a	47a	52a	1,06a	0,65a	0,6a	617a	
60	2082a	44,5a	27,6a	50,9a	49a	50a	1,10a	0,67a	0,6a	648a	
MGeral	1631	43,4	27,9	53	47	0,52	1,08	0,66	0,6	524	
	Variáveis / MILHO										
Doses (kg ha ⁻¹)	RG (kg ha ⁻¹)	PH (kg hl ⁻¹)	MMG (g)	MA (n)	ME (n)	RMA (%)	PG (g)	PC (g)	CAR (%)	RI (kg ha ⁻¹)	
0	578c	38,2b	27,4a	42,0b	57a	42b	1,09a	0,71a	0,64a	156c	
40	1618b	45,1a	26,2a	46,0b	54a	46b	1,06a	0,67a	0,63a	475b	
80	1828a	44,2a	27,5a	51,7a	48b	51a	1,11a	0,69a	0,62a	592a	
MGeral	1341	42,5	27,0	46,5	53	0,46	1,08	0,69	0,63	407,6	

*Significativo a 5% de probabilidade; Médias seguidas da mesma letra não se diferem entre si estatisticamente; RG: Rendimento de grãos; PH: Peso hectolitro; MMG: Massa média de grãos; MA: Grãos >2mm; ME: Grãos<2mm; RMA: Relação de grãos >2mm; PG: Peso de grãos; PC: Peso de cariopse; CAR: Percentual de cariopse; RI: Rendimento de Grãos Industrial.

4 CONCLUSÃO

As doses reduzidas do N fertilizante mostraram efeito similar à dose mais elevada. Por outro lado, diferenças foram detectadas quando comparadas a dose padrão sobre o resíduo de soja, nos caracteres peso hectolitro, rendimento de grãos industrial e rendimento de grãos. Além disso, o resíduo cultural de milho demonstrou maiores alterações, estas observadas em caracteres como rendimento de grãos, grãos maiores que 2 mm, grãos menores que 2 mm, relação de grãos maiores que 2mm e rendimento de grãos industrial.

5 REFERÊNCIAS

BARATA, T.; PACHECO, M. T.; FEDERIZZI, L. C. Caracterização da qualidade física de grãos de aveia em genótipos de elite de aveia. In: **REUNIÃO DA COMISSÃO BRASILEIRA DE PESQUISA DE AVEIA**, v. 21, Lages, 2001. Resultados Experimentais. Lages: UDESC, 2001. p. 135.

BOTHONA, C. A.; MILACH S. K. Relação entre qualidade física do grão em aveia e indicadores de rendimento industrial. In: **REUNIÃO DA COMISSÃO BRASILEIRA DE PESQUISA DE AVEIA,** v. 18, Londrina, 1998. Resumos. Londrina: IAPAR, Paraná, 1998. p. 47 – 48.

CRUZ, C. D. Programa Genes: versão Windons: aplicativo computacional em genética e estatística. Viçosa: UFV, 648 p., 2001.

FEDERIZZI, L. C.; ALMEIDA, J. Análise de alguns parâmetros de qualidade do grão de aveia. In: **REUNIÃO DA COMISSÃO BRASILEIRA DE PESQUISA DE AVEIA**, v. 18, Londrina, 1998. Resumos. Londrina: IAPAR, Paraná, 1998. p. 49-50.

GARCIA, F. O.; DAVEREDE, I. C. Diagnóstico para recomendação de adubação nitrogenada em culturas de interesse agronômico. In: YAMADA, Tsuioshi; STPP, Silvia Regina; VITTI, Godofredo Cesar (ed.). **Anais do simpósio sobre nitrogênio e Enxofre na Agricultura Brasileira**. p. 277–320, Piracicaba, IPNI Brasil, 2007.

GATTO, L. Dissimilaridade genética e análise de trilha quanto a características físicas e químicas do grão de aveia branca. 2005. **Dissertação** (Pós-Graduação em Agronomia) — Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo - UPF, 2005.

KOLCHINSKI, E. M.; SCHUCH, L. O. B. Relações entre a adubação nitrogenada e a qualidade de grãos e de sementes em aveia branca. **Ciência Rural**, Santa Maria, v. 34, n. 2, p. 379-383, 2004.

RAIJ, B. V.; **Avaliação da fertilidade do solo** / Benjamin van Raij; 1939 – Piracicaba, São Paulo: Instituto da Potassa e do Fosfato: Instituto internacional da Potassa, 1981; p. 142.

WAGNER, J. F. Eficiência agronômica em aveia branca sob distintas condições de fornecimento de nitrogênio. p. 65, 2008. **Trabalho de Conclusão de Curso** – Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ, Ijuí, 2009.

WENTZ, 2010. Fontes de adubação nitrogenada e seus reflexos na produtividade de trigo. 49p. **Trabalho de Conclusão de Curso** – Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ, Ijuí, 2010.