

ALINHAMENTO DE SEQÜÊNCIAS EST-SSR DE GÉRBERA, UTILIZANDO BLASTX

BENEMANN, Daiane de Pinho^{1,2}, <u>ARGE, Luis Willian Pacheco</u>², NOGUEIRA, Luciana Rodrigues², MAIA, Luciano Carlos da³; PETERS, José Antonio².

¹Doutoranda do Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas (daiane_bio@yahoo.com.br) ²Laboratório de Cultura de Tecido de Plantas, Departamento de Botânica, Instituto de Biologia, Universidade Federal de Pelotas ³ Dept^o de Fitotecnia – Centro de Genômica e Fitomelhoramento - FAEM/UFPel

1 INTRODUÇÃO

A Biologia Molecular é uma ciência que apresentou avanços muito significativos nas últimas décadas. Os pesquisadores frequentemente trabalham com uma grande quantidade de informações geradas a partir de experimentos em laboratório. Dada à necessidade de manipular essa informação, surgiu a bioinformática, que aplica técnicas computacionais, matemáticas e estatísticas para tratar aspectos referentes à biologia molecular. Um dos problemas principais dentro da biologia molecular é a comparação de sequências. A técnica mais frequentemente usada para comparar duas ou mais sequências de nucleotídeos ou aminoácidos consiste em sobrepor uma cadeia sobre outra e buscar semelhanças e diferenças, a qual é formalmente denominada alinhamento (Ticona 2003). O objetivo é realizar buscas por similaridades, que quando encontradas, indicam uma alta probabilidade de se encontrar funções análogas entres as següências. Com o grande volume de dados oriundos dos projetos de sequenciamento, ferramentas de alinhamento se tornaram muito úteis. As ferramentas hoje disponíveis utilizam duas formas de alinhamento: global e local. Na primeira, são comparadas seqüências totais, isto é, verificando se há similaridade entre sequências inteiras. No alinhamento local, há uma busca por trechos de següência que sejam parecidos (Korf et al., 2003).

A ferramenta BLAST (Basic Local Alignment Search Tool) utiliza heurísticas e algoritmos de programação dinâmica para obter os melhores alinhamentos locais, com um tempo de execução bem reduzido em relação aos programas até então conhecidos. (Altschul et al., 1997).

O presente trabalho tem como objetivo o alinhamento de seqüências não redundantes de EST-SSR de Gérbera, presentes no NCBI, a fim de identificar as possíveis funções e utilização destas seqüências em trabalhos futuros.

2 MATERIAL E MÉTODOS

Todos os ESTs relacionadas com Gerbera listados no NCBI foram baixados em formato FASTA. Para evitar a redundância, foi realizada uma análise em cluster com o software Cap3 (Huang e Madan, 1999). Para identificação e localização dos microssatélites (SSRs) em ESTs foi utilizado o software *SSRLocator* (Maia *et al.*, 2008). Após identificar seqüências ESTs-SSR, estas foram alinhadas (BLASTx) contra o banco de dados nr. As seqüências foram consideradas homólogas às proteínas conhecidas no banco de dados quando o E-Value do

BLAST foi menor do que 1e⁻¹⁰ e a identidade superior a 80% e consideradas análogas quando E-value foi maior que 1e⁻¹⁰.

3 RESULTADOS E DISCUSSÃO

Foi encontrado 15.851 sequencias ESTs de Gérbera no banco de dados do NCBI, correspondente a 7.254.970 pb, com um tamanho médio dos transcritos de 457 pb. Com a eliminação da redundância, obteve-se 7.529 contigs, correspondentes a 3.941.688 pb e tamanho médio dos transcritos de 533 pb.

Através do software SSRLocator, foram encontradas 225 sequências que continham microssatélites e estas foram utilizadas para alinhamento no banco de dados do NCBI. Destas 225 seqüências, somente 34 (15,11%) obtiveram E-Values inferior a 1e⁻¹⁰ e identidade superior a 80%, sendo consideradas sequências homólogas as següências de Gérbera. A maioria das següências identificadas no presente estudo teve similaridade significativa com genes de outras espécies de plantas, como Populus tricocarpa, Vitis vinifera e Ricinus comunis (Figura 1). Moccia et al., 2009, trabalhando com Silene latifólia, encontrou resultados semelhantes ao nossos e, acredita que essa similaridade é consegüência das informações já disponíveis destas espécies no banco de dados, visto que seus genomas foram sequenciados e não reflete a aproximidade genética. Porém, estas espécies que apresentaram semelhanças com Gérbera são pertencentes às angiospermas, ao clado das eudicotiledôneas e subespécie Rosids, enquando a Gerbera pertence à subespécie Asterids que se encontra na arvore filogenética ao lado de Rosids, no mesmo clado, por isso não podemos afirmar que essas espécies não apresentam semelhança genética. Assim, o correto seria testar a transferabilidade destes *primers* nas espécies semelhantes à Gérbera.

Com relação as possíveis funções das seqüências EST-SSR de Gérbera, os contigs g1333, g179, g231 e g219, obtiveram identidade superior a 95% e E-values inferiores a 1e⁻³⁸, relacionados a espécies como, *Malus X domestica* (função: C3HL domais class transcripition factor), *Capsicum annuum* (função: Rho), *Gerbera hybrida* (função: Aquaporina) e *Ricinus communis* (função: Serine-pyruvate aminotransferase), respectivamente. Os contigs g1176 e gi|58327929 não apresentaram função conhecida, porém foram semelhantes a *Populus trichocarpa* e *Glycine max*.

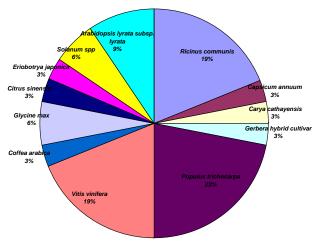


Figura 1- Espécies relacionadas as sequências de Gérbera.

Tabela 1 – Lista das ESTs-SSR, E-Value, porcentagem de identidade, possíveis funções e espécies encontradas no alinhamento no banco de dados do NCBI, utilizando BLASTx.

Contig	Blast (E-Value)	% de identidade	Função	Espécie
g20	7 e ⁻⁹⁵	80	ATP-dependent peptidase	Ricinus communis
g179	2 e ⁻⁸⁸	96	Rho	Capsicum annuum
g219	2 e ⁻⁶⁸	95	Serine-pyruvate aminotransferase	Ricinus communis
g228	3 e ^{- 143}	92	Putative chloroplast chlorophyll a/b-binding protein	Carya cathayensis
g231	2 e ^{- 142}	96	Aquaporina	Gerbera hybrid
g320	2 e ^{- 143}	85	Precursor of transferase serine	Populus trichocarpa
g438	2 e ^{- 14}	88	Hypothetical protein	Vitis vinifera
g1033	5 e ^{- 18}	83	Hypothetical protein	Populus trichocarpa
g1053	9 e ^{- 13}	86	Hypothetical protein	Vitis vinifera
g1092	4 e ⁻⁷⁷	90	Metionina synthase	Coffea arabica
g1101	2 e ⁻³⁶	88	Mitochondrial pyruvate dehydrogenase kinase isoform 1	Glycine max
g1176	3 e ⁻²⁹	86	Unknown	Populus trichocarpa
g1250	8 e ⁻⁸⁴	82	PSI reaction center subunit II	Citrus sinensis
g1257	9 e ⁻⁷⁷	84	Hypothetical protein LOC100259220	Vitis vinifera
g1293	8 e ^{- 177}	83	Unnamed protein product	Vitis vinifera
g1333	2 e ^{- 38}	100	Histone H4	Eriobotrya japonica
g1677	5 e ⁻⁷⁴	85	Acyltransferase	Ricinus communis
g2105	2 e ⁻⁷³	91	EF hand family protein	Solanum demissum
gi 62943581	8 e ⁻²³	80	Hypothetical protein ARALYDRAFT_494297	Arabidopsis lyrata subsp. lyrata
gi 62942576	5 e ^{- 57}	87	Predicted protein	Populus trichocarpa
gi 62942099	8 e ⁻⁸⁸	88	Predicted protein	Populus trichocarpa
gi 62942045	$3 e^{-50}$	92	Hypothetical protein LOC100252098	Vitis vinifera
gi 62941101	2 e ^{- 58}	82	Unnamed protein product	Vitis vinifera
gi 62940000	5 e ⁻²²	86	Hypothetical protein ARALYDRAFT 485347	Arabidopsis lyrata subsp. lyrata
gi 58329162	1 e ⁻³⁸	83	Predicted protein	Populus trichocarpa
gi 58329027	5 e ⁻¹⁹	82	Hypothetical protein ARALYDRAFT_911661	Arabidopsis lyrata subsp. lyrata
gi 58328640	9 e ^{- 13}	83	ATP citrate (pro-S)-lyase	Populus trichocarpa
gi 58328112	1 e ⁻²⁹	84	Regulator of ribonuclease activity A	Ricinus communis
gi 58327929	1 e ⁻⁴¹	72	Unknown	Glycine max
gi 58325973	1 e ⁻¹⁸	83	Lung seven transmembrane receptor	Medicago truncatula
gi 58325931	3 e ^{- 16}	89	Histone h2a	Ricinus communis
gi 58325855	1 e ⁻⁴⁵	86	Ubiquinolcytochrome c reductase	Solanum tuberosum
gi 58323140	1 e ^{- 56}	92	Derlin-2	Ricinus communis
gi 58322153	1 e ⁻⁷⁰	90	Protein kinase	Medicago truncatula

4 CONCLUSÕES

Pode-se concluir que 32 sequencias de EST-SSR de Gérbera apresentam funções conhecidas, podendo assim ser utilizadas para desenho de *primer*s em estudos futuros.

5 REFERÊNCIAS

ALTSCHUL, S. F.; MADDEN, T. L.; SCHAFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. L. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Research, v. 25, n. 17, p. 3389-3402, 1997.

HUANG X, MADAN A. CAP3: a DNA sequence assembly program. Genome Research v.9, p.868–877,1999.

KORF I.; YANDELL M., BEDELL J. An Essential Guide to the Basic Local Alignment Search Tool; O' Reilly & Associates, Inc., Sebastopol, U.S.A. 2003.

MAIA L.C. DA; PALMIERI D.A, DE; SOUZA V.Q; KOPP M.M; DE CARVALHO F.I; COSTA DE O.A. SSR Locator: Tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics, p.1-9, 2008.

MOCCIA M.D; OGER-DESFEUX C.; MARAIS G.A; WIDMER A. A White Campion (*Silene latifolia*) floral expressed sequence tag (EST) library: annotation, EST-SSR characterization, transferability, and utility for comparative mapping. BMC Genomics. N.10, p.243, 2009.

TICONA W. G. C. Aplicação de algoritmos genéticos múltiplo-objetivo para alinhamento de seqüências biológicas. 2003. Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação- ICMC-USP. USP-São Carlos, Fevereiro de 2003.