

AVALIAÇÃO DA CONFORMAÇÃO DA SUBUNIDADE B RECOMBINANTE DA ENTEROTOXINA TERMOLÁBIL DE *ESCHERICHIA COLI* FUSIONADA À rFimA DE *Salmonella* Enteritidis PARA UTILIZAÇÃO COMO ADJUVANTE EM VACINAS DE SUBUNIDADE

CONRAD, Neida Lucia¹; SEHN, Carla Pohl²; GRASSMANN, André Alex²; MOREIRA, Ângela Nunes^{2,3};

ALEIXO, José Antonio Guimarães²

1 Bolsista CNPq- UFPel 2 Laboratório de Imunologia Aplicada, Centro de Biotecnologia/CDTec - UFPel 3 Faculdade de Nutrição – UFPel Campus Universitário – Caixa Postal 354 – CEP 96010-900. neidaconrad @yahoo.com.br

1. INTRODUÇÃO

As vacinas de mucosa são capazes de provocar uma resposta imune local e, portanto, podem reduzir a colonização nas fases iniciais da infecção e a disseminação sistêmica posterior (Eriksson & Holmgren, 2002). Vacinas recombinantes de DNA ou de subunidade são uma boa alternativa para a imunização via mucosa, porém, apesar de serem mais seguras do que as vacinas tradicionais, são menos imunogênicas. Assim, adjuvantes são componentes essenciais para que estas vacinas sejam mais eficientes (Dzierzbicka & Kolodziejczyk, 2006).

Uma nova classe de imunoadjuvantes vem ganhando destaque na produção de vacinas recombinantes de subunidade. Esta classe é representada pela enterotoxina termolábil de *Vibrio cholerae* e *Escherichia coli* (CT e LT, respectivamente), as quais exibem mais de 80% de identidade (Simmons, et al. 2001). A toxina LT é formada por uma única molécula de subunidade A (LTA, 27kDa), com atividade ADP ribosiltransferase, ligada a um pentâmero de subunidade B (LTB, 11,6 kDa cada), altamente estável, com função de ligação ao receptor gangliosídeo GM1 de células de mamíferos. A ligação da LTB ao gangliosídeo GM1 permite que a subunidade A (tóxica) entre na célula (Spangler, 1992). O uso da LT como adjuvante não é recomendado, em função da toxicidade da subunidade A. Já a subunidade B, por não apresentar esta toxicidade, pode ser utilizada como adjuvante (De Haan et al., 1998).

A LTB é reconhecida por sua grande eficiência como adjuvante de mucosa, conferindo resposta imune protetora em camundongos contra o vírus herpes simples ocular tipo-1 (Richards et al., 2001), *Streptococcus* do grupo A (Dale & Chiang, 1995) e *Helicobacter pylori* (Weltzin et al., 2000). Além disso, estudos tem apontado a LTB como um adjuvante completo, capaz de induzir resposta imune celular, incluindo células T citotóxicas (Simmons et al., 2001), e humoral, estimulando resposta sistêmica e secretória de anticorpos contra antígenos coadministrados ou fusionados a ela (Pitcovski et al., 2006).

Como a atividade biológica da LTB depende de sua ligação ao gangliosídeo GM1, presente na superfície de células eucarióticas (De Haan et al., 1998) e essa ligação depende da adequada conformação tridimensional da LTB, o presente estudo tem como objetivo avaliar a conformação da subunidade B

recombinante da enterotoxina termolábil de *Escherichia coli* (rLTB) fusionada à subunidade fimbrial principal da fímbria tipo 1 recombinante (rFimA) de *Salmonella* Enteritidis para utilização como adjuvante em vacina de subunidade para salmonela.

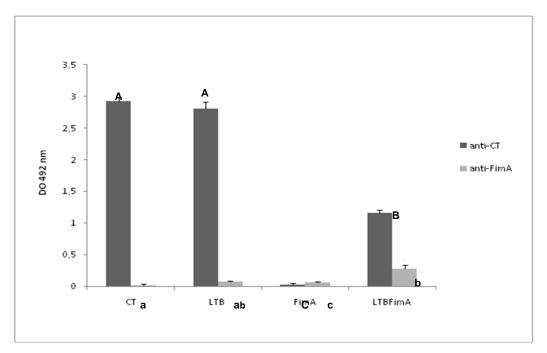
2. MATERIAL E MÉTODOS

2.1 Avaliação da conformação da LTB através de ELISA

A atividade biológica da LTB fusionada a FimA (rLTB/FimA) expressa em E. coli por Sehn et al. (2010) foi avaliada examinando sua ligação a este receptor utilizando um ELISA (Enzime-Linked Immunossorbent Assay) indireto. Placas de poliestireno foram sensibilizadas com 100 ng por cavidade de gangliosídeo GM1 bovino (Sigma Aldrich Co.) diluído em tampão carbonato-bicarbonato (0.05 M. pH 9.6) (100 µL/cavidade) e incubadas overnight a 4 °C. Em seguida, as placas foram lavadas três vezes com 200 µL de solução salina tamponada fosfatada (PBS), pH 7,4 acrescida de 0,5% de Tween 20 (PBS-T) por cavidade e bloqueadas com 1% de leite em pó diluído em PBS-T. Todas as reações subsequentes e as incubações ocorreram por 1 h a 37 °C, os reagentes foram utilizados a um volume de 100 µL/cavidade e após todas as etapas de incubação, as placas foram lavadas 3 vezes com 200 µL/cavidade de PBS-T. Após a etapa de bloqueio das placas, foram adicionadas, em triplicata, 100 ng por cavidade de rLTB (Fischer et al., 2010), rLTB fusionada a rFimA (rLTB/FimA), rFimA ou CT (Sigma Aldrich Co.) e as placas incubadas. Após, foi adicionado anticorpo de coelho anti-CT na diluição 1:6000 ou anticorpo anti-FimA 1:100 e as placas novamente incubadas. Após as lavagens, as placas foram incubadas com anticorpo de cabra antianticorpo de coelho conjugado a peroxidase (1:6000) ou anticorpo de cabra antianticorpo de camundongo conjugado a peroxidase (1:6000), conforme o anticorpo primário utilizado. O excesso de conjugados foi removido através de 5 lavagens PBS-T, as reacões foram reveladas utilizando solução contendo ortofenilenodiamina (OPD) diluída em tampão citrato-fosfato pH 4,0 (0,2 M com 0,01% de H₂O₂) e a leitura realizada em espectrofotômetro para microplacas (Thermo Plate) com filtro de 492 nm. Como controle sobre a ligação específica entre as proteínas e o gangliosídeo utilizou-se poços sem GM1, como controles negativos, rFimA e PBS, e como controle positivo utilizou-se a proteína CT.

2.2 Análise estatística

Análise de variância e teste de Tukey foram utilizados para determinar diferenças significativas (p < 0,01) entre as médias aritméticas. Todas as análises estatísticas foram realizadas no programa Statistix 9.


3. RESULTADOS E DISCUSSÃO

3.1 Avaliação da conformação da LTB expressa através da sua ligação ao gangliosídeo GM1

As proteínas rLTB e rLTB/FimA foram avaliadas in vitro quanto à sua conformação através da avaliação da capacidade de ligação ao gangliosídeo GM1 por ELISA indireto. Conforme se pode observar na Fig. 1, as proteínas rLTB e rLTB/FimA ligaram-se especificamente ao gangliosídeo GM1. A intensidade da

reação entre o anticorpo anti-CT e rLTB foi estatisticamene semelhante à observada entre o mesmo anticorpo e a toxina colérica comercial, o que demonstra que a conformação da rLTB expressa está adequada. A ligação da quimera rLTB/FimA ao gangliosideo GM1 foi de menor intensidade do que a da rLTB ou CT, porém foi significativamente superior à observada pelo controle rFimA (p<0,01). Nas reações utilizando anticorpo policlonal anti-rFimA, apenas a quimera rLTB/FimA apresentou resposta positiva, já que o anticorpo não reconhece a CT e a rLTB, e a rFimA não possui afinidade pelo GM1. Estes resultados sugerem que a fusão entre LTB e FimA não alterou a atividade biológica da LTB, assim como a rLTB produzida manteve a conformação da molécula nativa.

Figura 1. Avaliação da ligação das proteínas produzidas ao gangliosídeo GM1, determinada através de ELISA indireto. Os dados foram obtidos pela média das absorbâncias em triplicatas, utilizando o Teste *t* de Student. Letras diferentes indicam diferença estatisticamente significativa (p<0,01).

A adjuvanticidade da LTB está diretamente relacionada à capacidade de ligação ao gangliosídeo GM1 (De Haan et al., 1998). A fusão da rFimA à rLTB, bem como a expressão da quimera na forma insolúvel, aparentemente não alteraram a capacidade da rLTB em ligar-se ao GM1, indicando que a adjuvancidade da LTB foi preservada.

5.CONCLUSÃO

A fusão da FimA à LTB não alterou a conformação da rLTB, pois a mesma manteve a capacidade de ligação ao gangliosideo GM1. Além disso, a rLTB produzida manteve a conformação da molécula nativa. Estudos *in vivo* visando avaliar o efeito adjuvante da rLTB fusionada a rFimA estão sendo realizados.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- DALE, J. B., CHIANG, E. C. Intranasal immunization with recombinant group a streptococcal M protein fragment fused to the B subunit of *Escherichia coli* labile toxin protects mice against systemic chal-lenge infections. **Journal Infection Diseases**, v. 171, p.1038-1041, 1995.
- DE HAAN, L.; VERWEIJ, W.R.; FEIL, I.K.; HOLTROP, M.; HOL, W.G.J.; AGSTERIBBE, E.; WILSCHUT, J. Role of GM1 binding in the mucosal immunogenicity and adjuvant activity of the *Escherichia coli* heat-labile enterotoxin and its B subunit. **Immunology**, v. 94, p. 424-430, 1998.
- DZIERZBICKA, K.; KOLODZIEJCZYK, A. M. Adjuvants essential components of new generation vaccines. **Postepy Biochemistry**, v. 52, n. 2, p. 204-211, 2006.
- ERIKSSON,K.; HOLMGREN,J., Recente advances in mucosal vaccines and adjuvants. **Current Opinion in Immunology**. v.14, p.666-672, 2002.
- FISCHER, G.; CONCEICAO, F.R.; LEITE, F.P.L.; MORAES, C.M.; FERREIRA, L.N.; VILELA CO, et al. Recombinant *Escherichia coli* heat-labile enterotoxin B subunit humoral adjuvant effect depends on dose and administration route. **World Journal of Microbiology & Biotechnology**, v.26, n. 3, p.489-95, 2010.
- PITCOVSKI, J.; BAZAK, Z.; WASSERMAN, E.; ELIAS, O.; LEVY, A.; PERETZ, T.; FINGERUT, E.; FRANKENBURG, S. Heat labile enterotoxin of *E. coli*: a potential adjuvantfor transcutaneous cancer immunotherapy. **Vaccine**, **v.** 24, p. 636-643, 2006. RASK,
- RICHARDS, C.M.; AMON, A.T.; HIRST, T.R.; HILL, T.J.; WILLIAMS, N.A. Protective immunity to ocular herpes simplex virus type-1 infection in mice using *Escherichia coli* heatlabile enterotoxin. The **Journal of Virology**, v. 75, p 1664-1671, 2001.
- SEHN, Carla Pohl. Avaliação da atividade adjuvante da subunidade B da enterotoxina termolábil de *Escherichia coli* fusionada ou co-administrada a rFimA de *Salmonella* Enteritidis. 2010. Dissertação (Mestrado em Biotecnologia) Universidade Federal de Pelotas, Pelotas.
- SIMMONS, C. P.; GHAEM-MAGAMI, M.; PETROVSKA, L.; LOPES, L.; CHAIN, B. M.; WILLIAMS, N.A. Immunomodulation using bacterial enterotoxins. **Scand Journal Immunology**, v. 53, p.218–226, 2001.
- SPANGLER, B.D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. **Microbiology Review**. v. 56, p. 622–647, 1992.
- WELTZIN, R.; GUY, B.; THOMAS, W.D.; GIANNASCA, P.J.; MONATH, T.P. Parenteral adjuvant activities of *Escherichia coli* heat-labile toxin and its B subunit for immunization of mice against *Helicobacter pylori* infection. **Infection and Immunity**, v. 68, p. 2775-2782, 2000.