

ACÚMULO DE MATÉRIA SECA E ÁREA FOLIAR EM PLANTAS DE SOJA SUBMETIDAS AO RECOBRIMENTO DE SEMENTES COM CÁLCIO E SILÍCIO

RUFINO, Cassyo de Araujo¹; TAVERES, Lizandro Ciciliano¹; TRZECIAK, Mário Borges²; DORR, Caio Sippel³; BARROS, Antonio Carlos Souza de Albuquerque⁴

¹ Acadêmicos do PPG em C&T de Sementes (UFPel/FAEM), caixa postal 354, CEP 96010-900, Capão do Leão-RS). <u>cassyo.araujo @yahoo.com.br</u>
² Acadêmico do PPG em Fitotecnia (Escola Superior Luiz de Queiroz)
³ Acadêmico de Graduação, caixa postal 354, CEP 96010-900, Capão do Leão-RS).
⁴ Professor Titular do Programa de Pós-Graduação em Ciência e Tecnologia de Sementes (UFPel/FAEM), caixa postal 354, CEP 96010-900, Capão do Leão-RS). <u>acbarros @ufpel.tche.com</u>

1 INTRODUÇÃO

A soja *Glycine max* L. (Merrill) é amplamente utilizada pelos agricultores do estado do Rio Grande do Sul em suas lavouras. Onde ocupa uma área plantada de 4.010.000 milhões de ha, com produtividade de 2.100 Kg.ha⁻¹e produção de 8.422,3 milhões de toneladas, representado cerca de 45,4 % da área cultivada na região sul do Brasil (CONAB, 2010). Essa produção expressiva é conseqüência do manejo adequado e do uso cada vez maior de sementes de alta qualidade, associado à aplicação de micronutrientes nas sementes, tratamento químico adequado para controle de pragas, doenças e nematóides. Micronutrientes como o cálcio e o silício (Si) são amplamente utilizados no tratamento de sementes, para aumentar o poder germinativo, o vigor das sementes e o desenvolvimento da cultura.

Para BAUDET & PERES (2004) o recobrimento de sementes consiste na deposição de uma camada fina e uniforme de um polímero à superfície da semente. O recobrimento das sementes propõe aspectos positivos como à redução do impacto ambiental; desta forma podendo atribuir misturas mais complexas, como combinações com fungicidas, inseticidas, inoculantes, micronutrientes, protetores biológicos e film coatings; e monitoramento da sanidade da semente (BAUDET, 2006).

O Si não é considerado elemento essencial para o crescimento das plantas, mas tem tido efeitos benéficos em várias espécies (MA, 2004), no entanto GUÉVE *et al.*, (2007) comenta que esse micronutriente proporciona efetivo controle de doenças em plantas e tem sido relacionado à redução de efeitos prejudiciais decorrentes de agentes químicos (salinidade, toxidez causada por metal pesado e desbalanço de nutrientes) e físicos (acamamento, seca, radiação, altas e baixas temperaturas). Mesmo não sendo essencial, do ponto de vista fisiológico, para o crescimento e o desenvolvimento das plantas (EPSTEIN, 1994), a sua absorção traz inúmeros benefícios, principalmente ao arroz. Isto mostra a "essencialidade agronômica" deste elemento para um aumento e/ou produção sustentável desta cultura. De maneira geral, os efeitos benéficos do Si em plantas estão envolvidos na adaptação dessas às condições de estresses bióticos, como ataque de fitopatógenos, e abióticos, como estresse hídrico, toxidez de metais (Manganês, Cobre, Cadmo etc.) e salinidade (EPSTEIN, 1999; ROGALLA & ROMHELD, 2002; HECKMAN et al., 2003; ZHU et al., 2004).

Conforme HUBER (1980), o cálcio tem papel critico na divisão e desenvolvimento celular, na estrutura da parede celular e na formação da lamela

média, sendo relativamente imóvel nos tecidos. CAMARGO e SILVA (1987) relataram que as raízes e as extremidades dos caules não crescem com a ausência ou deficiência do cálcio. Sendo assim, uma boa nutrição com cálcio pode favorecer a formação das sementes, promovendo melhoria na sua qualidade.

O objetivo do trabalho foi avaliar o acúmulo de matéria seca e área foliar de plantas de soja submetidos ao recobrimento de sementes com cálcio e silício.

2 MATERIAL E MÉTODOS

O trabalho foi conduzido no Laboratório Didático de Análise de Sementes LDAS, e em casa de vegetação, ambos da Faculdade de Agronomia Eliseu Maciel da Universidade Federal de Pelotas, no ano agrícola de 2009/2010. Foi utilizada a cultivar de soja BMX Potencia RR, as quais foram semeadas 12 sementes por balde, permanecendo 3 plantas por balde. A unidade experimental correspondeu a cada balde contendo 3 plantas, sendo que as mesmas foram usadas para a avaliação de crescimento inicial, sendo avaliadas uma planta por vez. Realizaram-se três avaliações aos 10, 20, 30 dias após a emergência (DAE).

Os tratamentos consistiram do recobrimento de sementes com cálcio e silício: T1 – Ca (500g) + Si (500g); T2 – Si (500g); T3 – Ca (500g); T4 – Testemunha. A todos os tratamentos foram adicionados fungicida Maxim-XL (100mL.100 Kg⁻¹ de sementes), inoculante (300 ml/100 Kg de sementes), de sementes e o polímero sepiret[®] (100ml/100 Kg de sementes).

Foi adotada a seguinte ordem de aplicação dos produtos: funcigida[®], cálcio e silício, sepiret[®] (polímero + corante) e inoculante (Rizofix[®]), onde foram colocados diretamente no fundo do saco de polietileno. Logo após foram colocadas 0,2 kg de sementes no interior do saco polietileno, tendo sido agitado, por 3 minutos. Na seqüência, as sementes foram colocadas para secar em temperatura ambiente durante 24 horas.

A forma do silício utilizada foi o silicato de alumínio (caulim), que é uma argila que passa por uma série de classificações de tamanho e processos de refinamento para remover metais pesados, impurezas e melhorar sua brancura, resultando em um pó esbranquiçado, rocha moída, não tóxico, que contém 77,9% de SiO₂, 23,73% de Al₂O₃, 0,23% de CaO, 0,36% de K₂O, pH 5,5, usado na construção civil em revestimentos. A forma de cálcio utilizada para o experimento foi o calcário dolomítico.

As variáveis analisadas foram: **Área foliar** (AF): As determinações foram realizadas utilizando o método de determinação fotoelétrico (Área Meter, modelo LI – 3100 LI, da LI–Cor. LTDA), que fornece leitura direta em cm². **Matéria seca de parte aérea** (MSPA): foram coletadas as partes aéreas das plantas com o corte na altura do solo, logo após as plantas foram colocadas em estufa a 60°C até massa constante, para determinação da biomassa seca e pesadas em balança analítica de precisão.

Ó delineamento experimental foi blocos casualizados, com quatro repetições. Sendo os dados submetidos à análise de variância e as médias comparadas pelo teste de Duncan, a 5% de probabilidade. O programa estatístico utilizado foi o Winstat, versão 2.0.

3 RESULTADOS E DISCUSSÕES

Os resultados mostram que sementes recobertas com cálcio e silício apresentaram valores de matéria seca de plantas e área foliar, superiores em relação às sementes tratadas apenas com fungicida e polímero (testemunha) aos 10 DAE, entretanto, ao contrário do constatado pelos autores LEITE (1997) e CESSA (2005), quando observaram para a cultura do sorgo que não obtiveram resultados positivos com o acúmulo de matéria de parte área nas plantas, quando aplicado fonte de escória de siderurgia no solo. Observando o período de 20 DAE, pode notar que apenas o tratamento que contém Ca+Si, apresentou-se superior estatisticamente aos demais tratamentos. Já a avaliação feita no período de 20-30 DAE, a testemunha apresentou-se superior estatisticamente aos demais tratamentos, provavelmente os micronutrientes respondem mais nos estágios iniciais das plantas de soja, como foi observado nas avaliações anteriores.

Tabela 1. Produção de matéria seca de plantas e área foliar de plantas de soja conduzidas em casa de vegetação, submetidas ao recobrimento de sementes com cálcio e silício. Capão do Leão, 2010.

		Épocas	
Tratamento -	Matéria Seca de Parte Aérea (g ⁻¹ .planta)		
	10 DAE	20 DAE	30 DAE
T1	0,310 a	2,620 a	4,247 b
T2	0,321 a	2,039 b	5,084 ab
Т3	0,352 a	1,632 c	4,929 ab
T4	0,249 b	2,234 b	6,617 a
CV(%)	12.6	10.4	21.1
	Área foliar (cm².planta)		
T1	121,823 ab	540,294 a	878,255 a
T2	109,495 b	459,922 b	839,377 a
T3	112,722 ab	405,605 c	752,330 b
T4	125,925 a	424,034 bc	557,062 c
CV(%)	7.7	6.0	4.5

Médias seguidas pela mesma letra, dentro de cada coluna, não diferem entre si, pelo teste de Duncan a 5%.

Os resultados da área foliar demonstraram que sementes recobertas com Ca+Si, apresentaram resultados superiores estatisticamente para todos os períodos avaliados, isso pode ter ocorrido pela ação do Ca+Si em promover o crescimento foliar e não apresentar doenças foliares nas plantas, permitindo o melhor aproveitamento da superfície foliar. No tocante a avaliação aos 10 DAE, houve uma redução no peso de matéria seca no tratamento. Pode-se notar na avaliação aos 30 DAE, a testemunha obteve a menor área foliar, apresentando-se inferior estatisticamente aos demais tratamentos estudados.

4 CONCLUSÕES

Pode-se concluir que o recobrimento de sementes com Ca e Si, proporciona incrementos na matéria seca e área foliar em plantas de soja.

5 REFERÊNCIAS

Companhia Nacional de Abastecimento. Acompanhamento de safra brasileira: grãos, nono levantamento, junho 2010. Brasília: Conab, 2010. Disponível em: http://www.conab.gov.br/conabweb/download/safra/9graos_8.6.10.pdf, acessado em: 17/05/2010.

BAUDET, L.; PESKE, S.T. **A logística do tratamento de sementes.** In: Revista Seed News, Pelotas, ano X. n.1, Janeiro-Fevereiro 2004.

BAUDET, L.; PERES, W.B. **Recobrimento de sementes.** In: Revista Seed News, Pelotas, ano VIII . n.1, p. 20-23, Janeiro-Fevereiro 2006.

CAMARGO, P.; SILVA, O. Manual de adubação foliar. São Paulo, 1987. 258p.

CESSA, R. M. A. Absorção de fósforo e crescimento do sorgo em função da pré-aplicação do silício em um latossolo vermelho distróferrico. 2005. 55f. Dissertação (Mestrado em Produção Vegetal) — Universidade Federal do Mato Grosso do Sul. Dourados-MS.

EPSTEIN, E. The anomaly of silicon in plant biology. **Proceedings of the National Academy of Sciences**, Washington, v.91, n. I, p. 11-17, 1994.

EPSTEIN, E. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, Palo Alto, v. 50, p. 641-664, 1999.

GUÉVEL, M. H.; MENZIES, J. G; BÉLANGER R. R. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. **Plant Pathol.** 118:115-123, 2007.

HECKMAN, J. R.; JOHNSTON, S.; COWGILL, W. Pumpkin yield and disease response to amending soil with silicon. **Hort Science**, Alexandria, v. 38, n. 4, p. 552-554, July 2003.

HUBER, D.M.; ARNY, D.C. Interactions of potassium what plant disease. In: MUNSON, R.D. (Ed.). potassium in agriculture. Madison: Am. Soc. Agron.: Crop Sci. Soc. Am.; Soil Sci.: Soc. Am., 1985. P. 468-488.

LEITE, P. C. Interação silício fósforo em latossolo roxo cultivado com sorgo em casa de vegetação. 1997. 86 f. (Doutorado em Solos e Nutrição de Plantas). Universidade Federal de Viçosa, Viçosa-MG.

MA, J. F.; MIYAKE, Y.; TAKAHASHI, E. Silicon as a beneficial element for crop plants. In: DATNOFF, L. E.; SNYDER, G. H.; KORNDÖRFER, G. H. (Ed.). **Silicon in agriculture**. Amsterdan: Elsevier Science B. V., 2004. p. 17-39.

MACAHADO, A. CONCEIÇÃO, L. E. Software estatístico para Windows – WinStat, versão 2.0. 2003.

ROGALLA, H.; RÖMHELD, V. Role of leaf apoplast in silicon-mediated manganese tolerance of *Cucumis sativus* L. **Plant, Cell and Environment,** Oxford, v. 25, n. 4, p. 549-555, Apr. 2002.

ZHU, Z. J.; WEI, G. Q.; LI, J.; QIAN, Q. Q.; YU, J. Q. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (*Cucumis sativus* L.). **Plant Science**, Clare, v. 167, n. 3, p. 527-533, Sept. 2004.