

ATIVIDADE ANTIMICROBIANA DE TIO-DERIVADOS DO CITRONELAL E CITRAL FRENTE À BACTÉRIAS PATOGÊNICAS

<u>VICTORIA, Francine Novack</u>¹; PERIN, Gelson², JACOB, Raquel²; LENARDÃO, Eder João²; SILVA, Wladimir Padilha¹; GOLDBECK, Júlia Colvara¹

¹Aluna do Programa de Pós Graduação em Ciência e Tecnologia-FAEM-UFPel Agroindustrial(francinevictoria@yahoo.com.br; silvawp@ufpel.edu.br)

²Instituto de Química e Geociências – IQG-UFPel (elenardao@uol.com.br; perin@pq.cnpq.br, raquelgjacob@yahoo.com.br)

1.INTRODUÇÃO

Cymbopogon citratus Stapf. é uma erva nativa da Índia, também cultivada em países tropicais e subtropicais, pertence a família *Gramineae* e é, vulgarmente, conhecida como capim-limão, capim cheiroso, erva cidreira e capim-cidreira (Figueirinha *et al.*, 2008; Carlini *et al.*, 1985). O óleo de capim-limão é quimicamente reativo e a mistura de terpenos sofre uma série de reações quando exposta ao ar ou à luz solar, sendo lentamente convertido em uma substância de cor escura, viscosa e resinosa (Joy *et al.*, 2000).

O óleo essencial de *Cymbopogon citratus* vem sendo utilizado em sínteses químicas devido ao seu alto conteúdo de citral, uma mistura natural de dois isômeros de aldeídos, neral (trans-citral) e geranial (cis-citral) (Ferreira et~al., 1989). Além do citral, o óleo essencial de capim-limão contém pequenas quantidades de geraniol, citronelal e mirceno (Formacek et~al., 1989). Além da importância do produto para as indústrias farmacêuticas e de perfumaria, o aldeído α,β -insaturado de ocorrência natural, citral, é um composto chave na síntese química (Lenardão et~al., 2007). A adição de Michael de tióis a compostos α,β -insaturados é uma reação verde e atomicamente eficiente (Anastas et~al., 1998). Esta reação possui um papel importante na biossíntese e na síntese de compostos biologicamente ativos (Hall et~al., 1988)

Menezes estudou a atividade antimicrobiana de vários óleos essenciais frente às bactérias *Staphylococcus aureus*, *Pseudomonas aeruginosa* e *Escherichia coli*, verificando que os óleos são ativos contra bactérias Gram positivas e Gram negativas (Menezes *et al.*, 2005).

Neste resumo, descrevemos os resultados parciais relacionados à síntese de um tio-derivado do citronelal a partir da adição de Michael do tiol ao citral e ao estudo da atividade antimicrobiana deste utilizando as bactérias *Staphylococcus aureus* e *Salmonella enteridis*, bactérias patogênicas presentes em alimentos.

2.MATERIAL E MÉTODOS

O trabalho foi realizado nos Laboratórios de Síntese Orgânica Limpa do Instituto de Química e Geociências e de Microbiologia de Alimentos, do Departamento de Ciência e Tecnologia Agroindustrial, ambos da Universidade Federal de Pelotas.

Baseando-se na metodologia proposta desenvolvida por nosso grupo (Lenardão et al., 2007), sintetizou-se a partir do citral e do *p*-clorotiofenol, o 3-(*p*-clorofenil)tiocitronelal. Analisou-se o tempo da reação e a proporção dos reagentes. A reação foi testada utilizando-se agitação magnética à temperatura ambiente, aquecimento brando (60°C) e utilizando microondas, sem adição de solventes, seguindo assim os princípios da química verde. Como catalisador, foi usado KF/Al₂O₃ (50%m/m). Após consumo dos materiais de partida, a reação foi diluída com acetato de etila, filtrada com óxido de alumínio básico e purificada em coluna de sílica. A reação foi acompanhada por cromatografia em camada delgada e cromatografia gasosa. O produto foi caracterizado por análises de RMN de ¹H e ¹³C, espectroscopia de absorção no infra-vermelho e espectrometria de massas.

Esquema 1: Síntese do 3-(p-clorofenil)tiocitronelal

A atividade antimicrobiana foi testada através da técnica de difusão em Agar utilizando a técnica do disco, de acordo com Bauer (1966) e atualizações do *National Comittee for Clinical Laboratory Standards* (2003). Foram testadas cepas padrão de duas bactérias patogênicas em alimentos, *Staphylococcus aureus* (ATCC 29213) e *Salmonella enteridis* (ATCC 13076). Foi testada juntamente com o produto a atividade antimicrobiana do óleo essencial de capim-limão, do citral e do citronelal.

3.RESULTADOS E DISCUSSÃO

A síntese do 3-(p-clorofenil)tiocitronelal, apresentou um rendimento de 70%. A melhor condição reacional foi utilizando-se aquecimento com micro-ondas (MW) por um tempo de 2 minutos e 20%(m/v) de excesso do p-clorotiofenol. Quando não se utilizou o excesso, o rendimento da reação diminui, assim como, quando o tempo de reação foi maior que 2 minutos. Lenardão et al. (2007) estudaram a síntese de outros compostos a partir da adição de tióis ao citral e, entre os compostos estudados, estava o o-clorotiofenol, que apresentou um rendimento inferior ao encontrado em nossos estudos.

O produto apresentou atividade antimicrobiana nas concentrações de 200mg/mL, 100mg/mL e 50mg/mL contra as duas bactérias testadas, *Staphylococcus aureus* e *Salmonella enteridis*. Os resultados da atividade antimicrobiana do produto juntamente com dados da atividade do citral, citronelal e dos óleos essenciais de capim-limão e citronela estão na Tabela 1.

Tabela 1: Atividade antimicrobiana dos óleos essenciais de capim-limão, citral, citronelal e p-clorotiofenol

Citionelal e p-ciorotiolenoi								
Microrganismo	Concentração	Óleo essencial de capim- limão	Citral	R-citronelal	p-clorofeniltiocitronelal			
Staphylococcus aureus	Bruto	33,25a,A	30,00a,B	15,00a,C	69,67a,D			
	200mg/MI 100mg/mL	19,50b,A 14,50c,A	26,00a,A 16,34b,A	13,67b,B 11,33c,B	59,67b,C 52,34c,C			
	_ 1001119/1112	1 1,000,71	10,010,71	11,000,0	02,010,0			

	50mg/mL	12,25d,A	15,00b,A	9,17d,B	44,34d,C	_
Salmonella enteridis	Bruto	29,25a,A	29,67a,A,B	19,33a,B	74,70a,C	
	200mg/mL	26,50a,A	20,34b,B	20,00a,A,C	69,67b,D	
	100mg/mL	14,00b,A	17,67b,B	11,00b,C	57,00c,D	
	50mg/mL	13,50b,A	17,34b,A	9,67b,B	48,70d,C	

*Letras minúsculas diferentes na vertical indicam diferença significativa ao nível de 5% de probabilidade

**Letras maiúsculas diferentes na horizontal indicam diferença significativa ao nível de 5% de probabilidade

No óleo essencial de capim-limão quando foi testada a atividade contra S.aureus todas as concentrações testadas apresentaram diferença significativa ao nível de 5% de probabilidade; para S.enteridis, o óleo bruto e a concentração de 200mg/mL não apresentaram diferença significativa, mas foram diferentes das concentrações de 100mg/mL e 50mg/mL, que, por sua vez, não apresentaram diferença significativa, entre elas. A partir desses resultados é possível inferir que uma concentração menor, como por exemplo, 200 e 50mg/mL, têm o mesmo efeito antimicrobiano que amostras mais concentradas, como o extrato bruto e 100mg/mL, respectivamente. Quando analisou-se a atividade antimicrobiana do citral, material de partida da reação de síntese do 3-(p-clorofenil)tiocitronelal, observou-se que para S.aureus não houve diferença significativa entre o extrato bruto e a concentração de 200mg/mL e que também não houve diferença entre as concentrações de 100mg/mL e 50mg/mL; quando analisou-se a atividade em S. enteridis o extrato bruto apresentou diferença significativa, de todas as concentrações testadas, o que mostra que o efeito antimicrobiano das concentrações 200, 100 e 50mg/mL é o mesmo. Na análise dos dados provenientes do ensaio utilizando R-citronelal observou-se que para S.aureus todas as concentrações apresentaram diferentes efeitos; enquanto para Salmonella enteridis o extrato bruto não mostrou diferença em relação a concentração de 200mg/mL, mas foi diferente das concentrações de 100 e 50mg/mL, assim como a concentração de 200mg/mL. As concentrações de 100 e 50mg/mL não apresentaram diferença significativa, ao nível de 5%, entre elas. Os resultados da atividade produto 3-(p-clorofenil)tiocitronelal apresentaram significativa nas concentrações testadas, assim se pode observar que a concentração do produto é diretamente proporcional à atividade antimicrobiana, para as duas bactérias testadas.

Analisando o efeito de cada material testado, nas duas bactérias, ao nível de 5% de probabilidade, se pode observar que o produto 3-(*p*-clorofeniltiocitronelal) apresentou diferença significativa em relação ao óleo essencial de capim-limão, ao citral e ao citronelal, em todas as concentrações avaliadas. Este produto também apresentou um halo superior ao halo formado pelos outros materiais estudados.

A partir dos resultados obtidos conclui-se que o produto 3-(*p*-clorofenil)tiocitronelal pode ser um agente antimicrobiano para as bactérias Gram positivas e Gram negativas. A maior atividade inibitória foi observada para a bactéria *Salmonella enteridis*, causadora de uma infecção alimentar que pode tornar-se grave em indivíduos imunocomprometidos. Essa bactéria é Gram negativa, portanto menos resistente que as bactérias Gram positivas, como *Staphylococcus aureus*. Os halos formados no ensaio biológico estão apresentados na Figura 1.

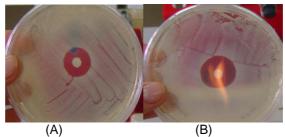


Figura 1: Halos de inibição nas culturas de (A) *Staphylococcus aureus* e (B) *Salmonella enteridis*, respectivamente, formados pelo produto 3-(p-clorofenil)tiocitronelal

4.CONCLUSÃO

Os resultados mostram que o 3-(p-clorofenil)tiocitronelal, facilmente obtido a partir de fonte renovável de matéria-prima, apresentou resultados satisfatórios como agente antimicrobiano contra *Staphylococcus aureus* e *Salmonella enteridis*, sendo um melhor agente antimicrobiano que o citral e o óleo essencial de capim-limão. Assim o produto 3-(p-clorofenil)tiocitronelal é um potencial agente antimicrobiano para a indústria de alimentos.

5.REFERÊNCIAS

ANASTAS, P. T.; WARNER, J. **Green Chemistry: Theory and Practice**; Oxford University Press: Oxford, 1998.

BAUER, A.; KIRB, W. M.M.; SHEVIS, J.C.; TURCK, M. Antibiotic Susceptibility testing by standardized single disk methodol. **Amer J. Clin. Pathol.**, v.45, p 493-496.1966.

FERREIRA, M.S.C.; FONTELES, M.C.; Revista Brasileira Farmacêutica, 70, 94-97, 1989.

FIGUEIRINHA, A.; PARANHOS, A.; PÉREZ-ALONSO, J.J.; SANTOS-BUELGA, C.; BATISTA, T.M.; Food Chemistry, 110, 718, 2008.

FORMACEK, V.; KUBECZKA, K.; Essential oil analysis by capillary chromatography and carbon 13 NMR spectroscopy. Nova lorque: J. Wiley, 155-160, 1982.

HALL, I. H.; LEE, K.-H.; MAR, E. C.; STARNES, C. O.; WADDELL, T. G. **J. Med. Chem.** 20, 333, 1977.

JOY, P.P.; SKARIA, B.P.; MATHEW, S.; MATHEW, G.; JOSEPH, A.; Kerala Agricultural University, Aromatic and Medicinal Plants Research Station, Odakkali, Asamannoor 683 549, Ernakulam, Kerala, India, **Lemongrass: The fame of Cochin**. Indian Journal of Arecanut, Spices & Medicinal Plants v. 8(2): p. 55-64, 2006.

LENARDAO, E.J.; FERREIRA, P.C.; JACOB, R.G.; PERIN, G.; LEITE, F.P.L.; **Tetrahedron Letters**, 48, 6763-6766, 2007.

MENEZES, E.A.; BERTINI, L.M.; PEREIRA, A.F.; OLIVEIRA, C.L.L.; MORAIS, S.M.; CUNHA, F.A.; CAVALCANTI, E.S.B.; **Revista Informa**, 17, 80-83, 2005.

National Committee for Clinical Laboratory Standarts. Performance Standart for Antimicrobial Disk Susceptibility Test. Approved Standart – 8th ed. Document M2-A8, v.23, n.1,2003.

6. AGRADECIMENTOS CAPES, CNPq, FAPERGS.