

ESTUDO DA VARIABILIDADE ESPACIAL DO SOLO UTILIZANDO A TÉCNICA DA CO-KRIGAGEM

VIEGAS, Lucas Souza^{1.1}; MIRITZ, Guilherme Kunde²; BARTELS, Guilherme Kruger¹; AQUINO, Leandro Sanzi³; PARFITT, José Maria Barbat⁴; TIMM, Luís Carlos⁵; NEBEL, Álvaro Luiz Carvalho⁶; PAULETTO, Eloy Antonio⁷

¹Graduando em Agronomia, Bolsista PIBIC - DER (Departamento de Engenharia Rural), FAEM (Faculdade de Agronomia Eliseu Maciel), UFPel (Universidade Federal de Pelotas).

Campus Universitário – Caixa Postal 354, CEP 96010-900 Capão do Leão-RS.

^{1.1}lucas.tche@gmail.com

²Graduando em Agronomia, Bolsista IC-CNPq – DER/FAEM/UFPel.

³Mestrando do Programa de Pós-Graduação em Agronomia (PPGA)/Solos, Bolsista CAPES – DS (Departamento de Solos), FAEM/UFPel.

⁴Pesquisador - Embrapa Clima Temperado, Estação Experimental Terras Baixas. ⁵Professor Adjunto - DER/FAEM/UFPel.

⁶Professor Assistente, CAVG (Conjunto Agrotécnico Visconde da Graça), UFPel.

⁷Professor Associado – DS/FAEM/UFPel.

1. INTRODUÇÃO

Devido às variações do arranjo poroso e da textura do solo, a sua umidade varia espacialmente tanto no sentido horizontal como vertical (Reichardt & Timm, 2008). O conhecimento da estrutura desta variabilidade é importante para o dimensionamento e a avaliação dos sistemas de irrigação e de drenagem, buscando um manejo mais adequado dos recursos naturais (Bernardo et al., 2006).

Algumas ferramentas estatísticas têm sido aplicadas para identificar a estrutura de variabilidade espacial dos atributos do solo. Dentre essas, destaca-se a geoestatística, que permite identificar tal estrutura de variabilidade espacial do solo e localizar zonas homogêneas utilizando o interpolador krigagem (Vieira, 2000). A geoestatística também pode ser aplicada no intuito de estudar e identificar a estrutura de correlação espacial entre duas variáveis, ditas como variável predita ou primária (variável resposta) e variável preditora ou covariável (variável explanatória). Nielsen & Wendroth (2003) destacaram que quando é utilizada a correlação espacial entre duas variáveis, expressa pelo semivariograma cruzado, a interpolação pode ser realizada pelo método de co-krigagem. Assim, a co-krigagem permite estimar atributos do solo que possuem a coleta de amostras e as análises laboratoriais mais trabalhosas e de custos elevados, como p.e. o conteúdo de água no solo na capacidade de campo $\theta_{\rm CC}$ (variável primária, amostrada em malha menos densa), a partir de atributos com coleta e análises mais simples e baratas, como p.e. teor de argila no solo (variável preditora, amostrado em malha mais densa) (Vereecken,

1995; Mcbratney et al., 2002). Para tanto, faz-se necessário conhecer qual a densidade de amostragem da covariável que a co-krigagem se torna eficaz.

Assim, com esse trabalho buscou-se avaliar a capacidade da co-krigagem em separar zonas homogêneas, utilizando 50% dos pontos amostrais da variável θ_{CC} , tomada como variável primária, estimada pelos 100 pontos da covariável teor de argila, comparando com o mapa gerado utilizando pela krigagem com 100% dos pontos amostrais da variável resposta (θ_{CC}).

2. MATERIAL E MÉTODOS

Em uma área pertencente à Estação Experimental de Terras Baixas da Embrapa Clima Temperado, localizada no município do Capão do Leão – RS, foi estabelecida uma malha regular com espaçamento de 10 m x 10 m entre os pontos, totalizando 100 pontos. Em cada ponto foram retiradas amostras com estrutura preservada para a determinação da curva de retenção de água no solo (tensões de 0, 1, 6, 10, 33, 100 e 1.500 kPa) e amostras com estrutura não preservada para a análise granulométrica do solo (frações de areia, silte e argila), ambas as metodologias são descritas em Embrapa (1997).

Para a aplicação da co-krigagem, o atributo selecionado como variável primária foi o conteúdo de água no solo a base de volume em equilíbrio com a tensão de 10 kPa, denominado de capacidade de campo (θ_{CC}). Como critério para a obtenção de uma malha menos densa dessa variável, foram excluídos intercaladamente os seus valores, formando uma malha com 50 pontos, espaçados 10 m entre si na coordenada X e 20 m na coordenada Y. Como covariável foi selecionado o teor de argila do solo (malha de 100 pontos), pelo fato que sua coleta e determinação ser mais simples e de custo menor, além de ter apresentado uma boa correlação espacial com a variável primária, analisada pelos parâmetros da estrutura de variabilidade espacial gerados pelo semivariograma cruzado (Co, Co+C, Ao e r_2 – Figura 1A).

A estatística descritiva foi aplicada aos conjuntos de dados no intuito de calcular as medidas de posição, de dispersão e de forma da distribuição, bem como para verificar a sua tendência de normalidade, pressuposto básico para que a geoestatística possa ser utilizada. O mapa de zonas homogêneas, também chamado de mapa de contorno, da variável θ_{CC} foi construído por meio do interpolador geoestatístico krigagem, ajustando ao semivariograma experimental um modelo matemático. Com base na malha menos densa (50 pontos amostrais) de θ_{CC} , no ajuste e análise dos semivariogramas individuais da variável primária e da covariável e do semivariograma cruzado dessas variáveis, foi construído o mapa de contorno de θ_{CC} pela técnica de co-krigagem, utilizando o software geoestatístico GS+, versão 7.0 (Gamma Design Software, 2004).

3. RESULTADOS E DISCUSSÃO

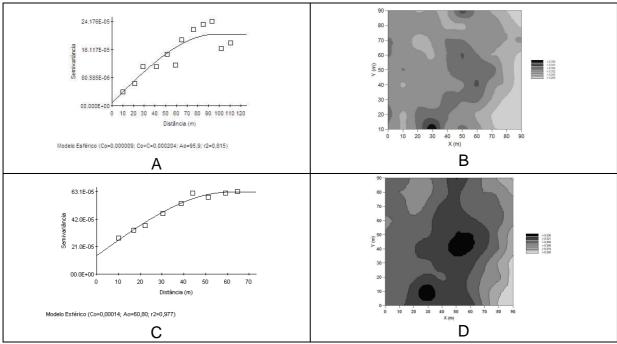

Na Tabela 1 está contida a estatística descritiva aplicada aos conjuntos de dados das variáveis teor de argila (100 pontos) e θ_{CC} (malhas de 100 e 50 pontos amostrais). A semelhança entre os valores da média e da mediana dos atributos analisados é um primeiro indicativo da centralidade das distribuições das séries, ou seja, uma tendência de ambas as distribuições a normal. Os coeficientes de assimetria calculados ficaram próximos de zero, corroborando com o acima salientado, embora os valores dos coeficientes de curtose calculados tenham se afastado de zero. Entretanto, do ponto de vista prático não é necessário que se faça uma transformação dos dados no intuito de normalizar ambas as distribuições. Concomitante a esse comportamento, a dispersão dos dados em torno da média, expressa pelo Coeficiente de Variação (CV em %), é classificada como baixa (Wilding & Drees, 1983), já que os valores dos CVs são inferiores a 15%.

Tabela 1. Estatística descritiva dos atributos do solo teor de argila e θ_{CC}

Atributo do solo	Média (m³.m⁻³)	Mediana (m³.m ⁻³)	Curtose	Assimetria	CV (%)
Argila	0,143	0,145	-0,167	0,071	9,164
$\theta_{CC_100pts.}$	0,312	0,313	1,185	-0,109	7,574
$ heta_{CC_50pts.}$	0,311	0,313	1,626	0,381	8,050

Comparando a estatística descritiva entre as malhas mais e menos densas da variável θ_{CC} , constata-se uma pequena diferença na estimativa dos parâmetros. Entretanto, reduzindo o número de observações de θ_{CC} em 50%, a tendência dos dados de serem distribuídos normalmente permaneceu, já que o valor do coeficiente de assimetria passou de -0,109 para 0,381, i.e., não se afastou muito de zero, o que seria considerada uma distribuição normal perfeita.

Os semivariogramas experimental e teórico cruzado da variável θ_{CC} referentes a malha de 50 e 100 pontos são apresentados na Figura 1A e 1C, respectivamente. O modelo teórico de um semivariograma fornece os parâmetros da estrutura de variabilidade espacial das variáveis estudadas que serão utilizados na construção das matrizes de krigagem e co-krigagem. Analisando o semivariograma cruzado entre as variáveis e o seu respectivo ajuste a um modelo teórico (Fig. 1A), percebese que os valores de efeito pepita (Co=0,000009) e do alcance (Ao=95,9 m) foram quando superestimados comparados parâmetros aos aiustados semivariograma teórico ajustado para a série de dados da malha com os 100 pontos amostrais (Fig. 1C), sendo Co=0,00014 e Ao=60,8 m. Essa diferença pode estar influenciando na qualidade da interpolação dos dados pelo método da co-krigagem (Fig. 1B), quando comparados com o mapa gerado pelo método da krigagem (Fig. 1D), pois visualmente não foi possível identificar total correspondência entre as zonas homogêneas de ambos os mapas gerados.

Figura 1. Semivariograma cruzado (A) e mapa gerado pela co-krigagem (B) para $\theta_{CC_50pts.}$, semivariograma (C) e mapa gerado pela krigagem (D) para $\theta_{CC_100pts.}$ do $\theta_{CC.}$

4. CONCLUSÕES

A construção de uma malha com 50% dos pontos amostrais não modificou consideravelmente a normalidade da distribuição das séries de θ_{CC} . O semivariograma cruzado superestimou os parâmetros geoestatísticos Co e Ao, quando associada a correlação espacial entre θ_{CC} e o teor da fração argila. O método da co-krigagem, a partir de uma malha menos densa (50% dos pontos amostrais) utilizando o teor da fração argila como covariável para estimar θ_{CC} não foi capaz de reproduzir qualitativamente todas as zonas homogêneas comparadas às estimadas pelo método de krigagem com todos os pontos amostrais.

5. AGRADECIMENTOS

Ao CNPq pelo auxílio financeiro ao projeto e pela concessão de bolsas, à CAPES pela concessão de bolsa e à EMBRAPA pela concessão da área experimental.

6. REFERÊNCIAS BIBLIOGRÁFICAS

BERNARDO, S., SOARES, A.A., MANTOVANI, E.C. **Manual de irrigação**. 8ªed. atualizada e ampliada. Viçosa: Editora UFV, 2006. 625p.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Centro Nacional de Pesquisa de Solos. **Manual de Métodos de Análise de Solo**. 2ª ed. Rio de Janeiro, 1997. 212 pp.

GAMMA DESIGN SOFTWARE. **GS+: version 7.0**. Geostatistics for the Environmental Sciences. Plainwell: Gamma Design Software, 2004.

MCBRATNEY, A.B., MINASNY, B., CATTLE, S.R., VERVOORT, R.W. From pedotransfer functions to soil inference systems. **Geoderma**, V.109, p.41–73, 2002. doi:10.1016/S0016-7061(02)00139-8

REICHARDT, K., TIMM, L.C. Solo, planta e atmosfera: conceitos, processos e aplicações. 1ª ed. 1ª reimpressão. São Paulo, Manole, 2008. 478p.

NIELSEN, D. R. & WENDROTH, O. **Spatial and temporal statistic - Sampling field soils and their vegetation**. Cremlingen-Desdedt, Catena-Verlag, 2003. 416 p.

VEREECKEN, H. Estimating the unsaturated hydraulic conductivity from theoretical models using simple soil properties. **Geoderma**, v.65, p.81-92, 1995. doi:10.1016/0016-7061(95)92543-X

VIEIRA, S.R. Geoestatística em estudos de variabilidade espacial do solo. In: NOVAIS, R.F.; ALVAREZ, V.H. & SCHAEFER, C.E.G.R. (Eds.). **Tópicos em ciência do solo**. Viçosa: Sociedade Brasileira de Ciência do Solo, 2000. v.1. p.1-54.

WILDING, L.P.; DREES, L.R. Spatial variability and pedology. In: WILDING, L.P.; SMECK, N.E.; HALL, G.F. eds. **Pedogenesis and soil taxonomy: concepts and interactions**. New York: Elsevier, 1983. p.83-116.