

EFEITO DO ARMAZENAMENTO A BAIXA TEMPERATURA SOBRE A ESTABILIDADE DO FARELO DE ARROZ

<u>PESTANA-BAUER, Vanessa Ribeiro¹</u>; ZAMBIAZI, Rui Carlos²; BRUSCATTO, Mariângela H.¹; BARTZ, Josiane².

Deptº de Ciência e Tecnologia Agroindustrial – FAEM/UFPel
Campus Universitário – Caixa Postal 354 – CEP 96010-900. vanessapestana@yahoo.com.br
Deptº de Ciência dos Alimentos – Curso de Química de Alimentos/UFPel.

1. INTRODUÇÃO

O farelo de arroz é um co-produto da indústria arrozeira, obtido a partir da etapa de polimento do grão. É desta fração do arroz que se obtém o óleo de arroz, devido ao seu alto conteúdo lipídico (Silva, Sanches, Amante, 2006).

O farelo de arroz tem sido alvo de estudo devido a sua composição protéica, seu alto teor em fibras e sais minerais como fósforo, ferro e magnésio e principalmente devido a sua alta composição lipídica, que contém fitoquímicos como o γ-orizanol e tocoferóis, aos quais estão associados propriedades antioxidantes e efeitos benéficos a saúde, como decréscimo da incidência de arterioscleroses e redução dos níveis de colesterol sanguíneo (Massaro, 2001; Danielski et al., 2005; Xu, Hua & Godber, 2001).

Contudo, o farelo de arroz branco in natura se deteriora com bastante facilidade, devido à ação enzimática, principalmente de lipases e lipoxigenases que hidrolizam e oxidam os triacilgliceróis gerando ácidos graxos livres responsáveis pelo sabor ácido e desagradável do ranço (Rodrigues, Onoyama & Meirelles, 2006), o que dificulta sua estocagem e conseqüentemente sua utilização como matéria-prima para a extração de óleo comestível. Desta forma, é necessária a inativação enzimática imediata do farelo, sendo a extrusão termoplástica um meio de promover sua estabilidade (Lakkakula, Lima & Walker, 2004; Silva, Sanches & Amante, 2006; Carvalho & Vieira, 1999). Já o farelo de arroz parboilizado apresenta-se estável mesmo após quatro meses de estocagem a temperatura de 48°C, indicando que o processo de parboilização pode ser suficiente para manter a estabilidade do farelo (Silva et al., 2006).

O objetivo deste trabalho foi avaliar a estabilidade lipídica do farelo de arroz parboilizado e do farelo de arroz peletizado armazenado a temperatura de -18°C.

2. MATERIAL E MÉTODOS

Foram utilizadas duas diferentes amostras de farelo de arroz, sendo: farelo parboilizado, obtido logo após a etapa de polimento do grão de arroz parboilizado; e o farelo peletizado, obtido após a etapa de peletização do farelo de arroz (estabilização termoplástica). Estas amostras foram doadas pela Irgovel – Indústria Rio-grandense de Óleos Vegetais, localizada na cidade de Pelotas/RS. As amostras foram armazenadas em embalagens plásticas translúcidas sob a temperatura de -18°C, por um per íodo de 30 meses. A qualidade lipídica dos diferentes farelos foi avaliada através das análises de umidade, acidez, índice de peróxido e conteúdo de tocoferóis, avaliadas antes do armazenamento dos farelos, e as análises de acidez, índice de peróxido e conteúdo de tocoferóis após o período de armazenamento.

A análise de umidade foi realizada segundo a técnica descrita pelo Instituto Adolfo Lutz (1985); sendo os resultados expressos em %. O teor de acidez e o índice de peróxido foram determinados segundo AOCS (1992) com preparação prévia das amostras de acordo com Pestana et al. (2009), sendo que para acidez, o farelo pesado foi colocado em contato com solução de éter etílico:álcool etílico (2:1, v/v) na proporção de farelo:solvente de 2:10 (p/v), por aproximadamente 15h, após etapa de filtração, o filtrado foi completado ao volume de 25mL com a mistura de solventes; . Para o índice de peróxido, o farelo após pesado, foi colocado em contato com solução ácido acético:clorofórmio (3:2, v/v), na proporção de farelo:solvente de 1:6 (p/v) por aproximadamente 15h. Filtrou-se o material e completou-se o volume para 30 mL com a solução de acético:clorofórmio (3:2, v/v).

A análise de tocoferóis foi realizada de acordo com a metodologia descrita por Pestana et al. (2008), utilizando um sistema de cromatografia líquida de alta eficiência-HPLC (Shimadzu), provido de coluna analítica de fase reversa, Shim-Pak CLC-ODS (4,6mm x 150mm x 5μm), tendo como fase estacionária sílica com grupamentos octadesil. Utilizou-se o detector fluorescência com excitação de 290nm e emissão a 330nm.

As análises foram realizadas em duplicata.

3. RESULTADOS E DISCUSSÃO

Nas Tabelas 1 e 2 observa-se a composição físico-química do farelo de arroz parboilizado e peletizado, antes e depois do armazenamento, respectivamente.

Tabela 1. Caracterização físico-química dos farelos de arroz antes do armazenamento.

Farelo de arroz	Umidade	Acidez	Índice de Peróxido	
	%	% ac. oléico	meq-g O ₂ .kg ⁻¹	mg.100g ⁻¹
Parboilizado	9,00	0,67	4,05	2,31
Peletizado	9,69	1,75	2,21	7,74

Tabela 2. Composição dos farelos de arroz após 30 meses de armazenamento a -18℃.

Farelo de arroz	Acidez % ac. oléico	Índice de Peróxido meq-g O ₂ .kg ⁻¹	Tocoferóis mg.100g ⁻¹
Parboilizado	0,57	21,18	0,10
Peletizado	3,26	0,93	0,86

Observou-se que a acidez do farelo não armazenado foi maior no farelo de arroz peletizado, o que pode estar relacionado ao maior teor de umidade, quando comparado com o farelo parboilizado, visto que as reações químicas de hidrólise dos lipídios estão relacionadas ao conteúdo de água, sendo catalisada pelo aumento de temperatura (Zambiazi, 1997).

Após o período de armazenamento do farelo de arroz, observa-se que praticamente não ocorreu reações de hidrólise no farelo de arroz parboilizado, pois a acidez não aumentou durante o armazenamento. A acidez para o farelo de arroz peletizado teve um aumento de 1,86 vezes quanto ao seu conteúdo inicial. Este acréscimo poderia estar relacionado ao seu maior teor de umidade, sendo mais suscetível à hidrólise química dos lipídios, embora havendo redução da velocidade das reações químicas causada pelo armazenamento a baixa temperatura.

Em relação ao índice de peróxido, observou-se que o farelo de arroz parboilizado teve acréscimo após o armazenamento e o farelo desengordurado teve uma pequena diminuição, o que pode estar relacionado a continuidade de reações oxidativas, onde os hidroperóxidos são decompostos em produtos secundários, como aldeídos e cetonas (Zambiazi, 1997). As reações oxidativas podem ter sido favorecidas pelo tipo de embalagem utilizada durante o armazenamento. Para embalagens translúcidas e permeáveis ao oxigênio, o ideal seria embalar o farelo sob vácuo, pois a presença de oxigênio e luz catalisa as reações de oxidação dos lipídios (Zambiazi, 1997).

Em relação aos tocoferóis, observou-se um maior conteúdo no farelo de arroz peletizado (constituído por 70% de farelo de arroz branco e 30% de farelo parboilizado), o que pode ser atribuído ao farelo de arroz branco possuir maior conteúdo de tocoferóis que o farelo de arroz parboilizado de acordo com Pestana et al. (2009).

O conteúdo total de tocoferóis reduziu após o período de armazenamento, cerca de 95,67% e 88,89% para o farelo de arroz parboilizado e peletizado, respectivamente, o que pode estar relacionado a sua ação como composto antioxidante. Assim, o farelo de arroz peletizado teve menor conteúdo final de peróxido, o que pode estar relacionado ao maior conteúdo dos tocoferóis como antioxidante natural.

4. CONCLUSÕES

Durante o armazenamento a baixa temperatura (-18°C), o farelo de arroz peletizado apresentou maior tendência a reações de hidrólise, evidenciado com o aumento da acidez, enquanto que o farelo de arroz parboilizado apresentou maior tendência a reações oxidativas, observado pelo aumento do índice de peróxido. O farelo de arroz peletizado possui maior conteúdo de tocoferóis e apresentou maior estabilidade oxidativa durante as condições de armazenamento deste trabalho.

5. REFERÊNCIAS BIBLIOGRÁFICAS

AOCS. American Oil Chemists' Society. Official and tentative methods of the American Oils Chemists' Society, Champaign, IL., 1992.

- CARVALHO, J. L. V.; VIEIRA, N. R. A. A cultura do arroz no Brasil: usos alternativos. Santo Antônio Goiás: Embrapa Arroz e Feijão, p.605-621. 1999.
- DANIELSKI, L.; ZETZL, C.; HENSE, H.; BRUNNER, G. A process line for the production on raffinated rice oil from rice bran. **Journal of Supercritical Fluids**. V.34, p.133-141, 2005.
- INSTITUTO ADOLFO LUTZ. Normas analíticas do Istituto Adolfo Lutz: Método químico e físicos para análise de alimentos. v.1. São Paulo: O Instituto, p. 245-263, 1985.
- LAKKAKULA, N. R.; LIMA, M.; WALKER, T. Rice bran stabilization and rice bran oil extraction using ohmic heating. **Biosource Technology**, v.92, p.157-161, 2004.
- MASSARO, A. F. Enriquecimento protéico de farelo de arroz desengordurado, som sangue bovino, utilizando a técnica de leito de jorro. Rio Grande. 2001. Tese de mestrado em Ciência, Tecnologia e Engenharia de Alimentos. Programa de Pós-Graduação em Ciência, Tecnologia e Engenharia de Alimentos. Fundação Universidade Federal de Rio Grande FURG.
- PESTANA, V.R.; ZAMBIAZI, R.C.; MENDONÇA, C.R.; BRUSCATTO, M.H.; LERMA-GARCIA, M.J.; RAMIS-RAMOS, G. Quality Changes and Tocopherols and γ-Orizanol Concentrations. **J Am Oil Chem Soc**, v.85, p.1013–1019, 2008. PESTANA, V.R.; ZAMBIAZI, R.C.; MENDONÇA, C.R.; BRUSCATTO, M.H.;
- RAMIS-RAMOS, G. Influencia del procesado industrial sobre las características químico-físicas y contenido en lípidos y antioxidantes del salvado de arroz. **Grasas y Aceites**, n. 2, v.60, ABRIL-JUNIO, p.184-193, 2009.
- RODRIGUES, C. E. C.; ONOYAMA M. M.; MEIRELLES, A.J.A. Optimization of the rice bran oil deacidification process by liquid-liquid extraction. **Journal of Food Engineering**. v.73, n. 4, p. 370-378, 2006.
- SCARAVARIELLO, E.M.S.; ARELLANO, D.B. γ-oryzanol: un importante componente del aceite de salvado de arroz. **Archivos latino Americanos de Nutricion**. v. 48 n. 1,1998.
- SILVA, M. A.; SANCHES, C.; AMANTE, E. R. Prevention of hydrolytic rancidity in rice bran. **Journal of Food Engineering**, v.75, p.487-491, 2006.
- Xu, Z., Hua, N., & Godber, J. S. Antioxidant activity of tocopherols, tocotrienols, and gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by 2'2-azobis (2-methypropionamidine) dihydrochloride. **Journal of Agricultural and Food Chemistry**, v.49, p.2077–2081, 2001.
- Yasukawa, K., Akihisa, T., Kimura, Y., Tamura, T., & Takido, M. Inhibitory effect of cycloartenyl ferulate, a component of rice bran, on tumor promotion in two stage carcinogenesis in mouse skin. **Biological Pharmaceutical Bulletin**, v.21, p.1072–1076, 1998.
- ZAMBIAZI, R. The role of endogenous lipid components on vegetable oil stability. Manitoba/Canadá, 1997. 304 f. Thesis (Doctor of Philosophy), Food and Nutritional Sciences Interdepartmental Program, University of Manitoba.