ALTERAÇÕES NO CONDICIONAMENTO AMBIENTAL DA EDIFICAÇÃO SUINÍCOLA DECORRENTE DO USO DE DIFERENTES ALTURAS DE CAMA

CORRÊA, Erico Kunde^{1,2*}; LUCIA JR., Thomaz³; GIL-TURNES, Carlos³; CORRÊA, Marcio Nunes³; GIL, João Rodrigo³, CASTILHOS, Danilo³; BIANCHI, Ivan¹; ULGUIM, Rafael da Rosa⁴; COREZZOLLA, José Luis⁴; PERONDI, Arlan⁴

¹Doutorando em Biotecnologia Agrícola, Centro de Biotecnologia, UFPEL, 96010-900, Pelotas, RS, e-mail:ekcorrea @ ufpel.edu.br;

²Bolsista Cnpq;

³Professor – UFPEL;

⁴Acadêmico de Medicina Veterinária, UFPEL.

INTRODUÇÃO

Nos últimos anos o sistema de produção de suínos em cama (SPC), tem despertado o interesse do setor produtivo. Este sistema tem como princípio a substituição do piso convencional (concreto, ferro ou plástico), por uma cama de 50 cm de profundidade com material rico em carbono (serragem, casca de arroz ou palhas de cereais) [3]. Esta camada desempenha a dupla função de piso e biodiaestor dos dejetos [4]. Deste modo, os dejetos são retidos, armazenados e estabilizados dentro da própria edificação suinícola e manejados na forma sólida. A produção de suínos em SPC apresenta a desvantagem de, em épocas ou locais de clima quente, influir negativamente no conforto ambiental dos animais, extrapolando, durante a fase termofílica, a temperatura acima do limite superior recomendado para os suínos em terminação, devido aos processos que ocorrem durante a compostagem in situ dos dejetos da criação [2]. A temperatura da cama aumenta gradativamente, podendo atingir valores superiores a 65°C, quando prevalecem microorganismos termófilos [8]. Deste modo, camas com diferentes alturas, poderiam diferir em temperatura durante a fase termofílica, propiciando diferentes condições ambientais no interior da edificação. Este trabalho objetivou avaliar o efeito de diferentes alturas de cama com casca de arroz, utilizadas na criação de suínos nas fases de crescimento e terminação, sobre o condicionamento ambiental da edificação zootécnica.

MATERIAL E MÉTODOS

Este estudo foi desenvolvido no Centro Agropecuário da Palma, da UFPEL. Foram comparados três tratamentos, dispostos em três baias, sendo duas profundidades diferentes de cama de casca de arroz, 0,5 m (T1) e 0,25 m (T2), e um sistema com piso compacto de concreto (T3). Cada baia com 5 animais foi adotada como unidade experimental. Cada tratamento constou de quatro lotes ao longo do tempo, lote I de julho a setembro de 2003, lote II de outubro a dezembro de 2003, o lote III de fevereiro a abril de 2004 e o lote IV de maio a julho de 2004. Houve substituição total das camas entre o segundo e terceiro lotes. Foram utilizadas três baias, com piso compacto de concreto, dispostas linearmente, com 7,0 m² cada uma (2,0 m x 3,50 m), com área de 1,4 m²/suíno. Duas destas baias receberam os tratamentos com cama de casca de arroz, distribuída em toda área das baias. Cada cama foi utilizada na produção de 2 lotes, sem adição de material complementar, mas com revolvimento (aeração) ao final do primeiro lote mediante emprego de enxadão. Cada baia possuía um comedouro e um bebedouro convencional.

Sessenta animais F_1 (Landrace x Large White), com 15 animais por lote, sendo 5 em cada baia, foram observados dos 60 aos 145 dias. Os animais foram alimentados *ad libitum*. Foi coletada a temperatura ambiente (TA), a 70 cm de altura do piso, mediante o uso de termômetro digital com sonda Multi-Stem® (-50 a 150°C, \pm 1°C). Para umidade relativa do ar (UR), utilizou-se termômetro de bulbo úmido e bulbo seco. Todas as medidas foram realizadas semanalmente. Os resultados obtidos foram submetidos a análise estatística [7]. Utilizando-se análise de variância e comparação de médias, em função dos tratamentos, lote e mês. Utilizaram-se também contrastes ortogonais, através do teste de Schefeé, para comparar NC (camas novas, lote I e III) com VC (camas velhas, lotes II e IV), além de comparar PC (primeiras camas, lotes I e II) com SC (segundas camas, lotes III e IV).

RESULTADOS E DISCUSSÃO

Podemos observar na Tabela 1, que não ocorreu efeito de tratamento (P>0,05) para as variáveis UR e TA nos diferentes tratamentos. A presença de cama, mesmo em diferentes alturas dentro da baia, não foi suficiente para alterar a resposta da variável UR. Em todos os tratamentos, a UR foi superior ao recomendado por [1] de 70% e por [9] de 75% para suínos em crescimento e terminação. De acordo com [6], valores elevados de UR diminuem a perda de calor dos suínos por evaporação, principalmente pelos pulmões, piorando o desempenho zootécnico dos animais. A TA não foi influenciada pelos sistemas de piso, mesmo o calor gerado nas camas devido a fase termofílica [5], não foi suficiente para modificar os valores desta variável. A TA nos diferentes tratamentos situou-se dentro do intervalo recomendado por [9], para suínos em terminação de 12 a 21 °C, mas T1 e T2 apresentaram valores médios ligeiramente superiores ao recomendado por [1] de 15 a 18 °C. Na Tabela 2, ocorreu efeito de lote sobre a UR (P<0,05). O valor da UR no IV lote foi superior ao II e III, mas o I lote não diferiu de nenhum dos demais. Houve efeito de lote para TA (P<0,05). Os maiores valores foram observados no II e III lotes, coincidindo com as estações mais quentes do ano. O maior valor médio observado para UR foi observado no IV lote, provavelmente como reflexo das condições externas. Apesar disto, as médias de UR ficaram acima da faixa recomendada por [1] de 70% e por [9] de 75%, para suínos nesta fase. Para TA, os maiores valores foram observados nas épocas quentes do ano (II e III lote). Nos lotes realizados em épocas quentes, o desempenho produtivo dos animais pode ser prejudicado, visto que animais em terminação são mais sensíveis a temperaturas altas [2]. Não ocorreu diferença significativa (P>0,05), entre os meses para UR (Tabela 3). O primeiro mês apresentou a maior média para TA. Não foi observada diferença significativa (P<0,05) entre PC e SC (Tabela 4) para UR e TA. Também não foi observada diferença significativa (P>0,05) para as variáveis UR e TA (Tabela 5). Embora tenham sido conduzidas em diferentes épocas do ano, as variáveis UR e TA, não diferiram entre PC e a SC, como esperado, pois eram somente uma repetição no tempo. Na comparação entre NC, em plena fase termofílica, com VC em fase mesofílica, não houve efeito suficiente para alterar a resposta das variáveis UR e TA.

CONCLUSÕES

Deste modo, a utilização de piso com cama na produção de suínos, mesmo em diferentes alturas, não foi suficiente para alterar condicionamento ambiental da

edificação zootécnica. Os valores de UR e TA refletiram as condições externas da instalação zootécnica.

REFERÊNCIAS

- **1.** BENEDI, J.M.H. **El Ambiente de los Alojamientos Ganaderos**. Madrid, Ministério de Agricultura, Pesca y Alimentación, 1986. 28 p.
- **2.** CORRÊA, E.K.; PERDOMO, C.C.; JACONDINO, I.F.; BARIONI, W. Environmental condition and performance in growing and finishing swines raised under different types of litter. **Brazilian Journal of Animal Science**, v. 29, n. 6, p. 2072-2079, 2000.
- **3.** GENTRY J. G., MCGLONE J. J., BLANTON JR. J. R., MILLER M. F. Alternative housing systems for pigs: Influences on growth, composition, and pork quality. **Journal of Animal Science**, n. 80, p. 1781-1790. 2002.
- **4.** HONEYMAN M. S. & Harmon. J. D. Performance of finishing pigs in hoop structures and confinement. during winter and summer, **Journal of Animal Science**, n. 81, p. 1663–1670, 2003.
- **5.** KAPUINEN, P. Deep litter systems for beef cattle housed in uninsulated barns, part 2: Temperatures and Nutrients. **Journal Agricultural Engineer Research,** n. 80, p. 87-97, 2001.
- **6.** MORRISON, S.R.; HEITMAN, H.; BOND, T.E. Effect of humidity on swine at temperatures above optimum. **International Journal of Biometeorology**, n. 13, p 135-139, 1969.
- 7. STATISTIX 8.0, Analytical Software, User's Manual, 396 p. 2003.
- **8.** TANG, J. C., KANAMORI T., INOUE Y., YASUTA T., YOSHIDA S., KATAYAMA A., Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. **Process Biochemistry,** n. 39, p. 1999–2006, 2004.
- **9.** VEIT, H.P. & TROUTT, H.F. Monitoring air quality for livestock respiratory health. **Veterinary Medicine and Small Animal Clinican**, n. 77, v. 1, p. 454-464, 1982.

TABELA 1. Médias de umidade relativa do ar (UR%) e temperatura do ar (TA em°C), de acordo com o tratamento.

TRAT	UR	TA
T1	81,2 ^A	18,3 ^A
T2	81,4 ^A	18,3 ^A 18,2 ^A
Т3	80,6 ^A	17,7 ^A

Médias seguidas pela mesma letra na coluna não diferem significativamente (P>0,05).

TABELA 2. Médias de umidade relativa do ar (UR%) e temperatura do ar (TA em°C) de acordo com o lote.

LOTE	UR	TA
IL	80,7 ^{AB}	15,9 ^B
IIL	79,8 ^B	20,0 ^A
IIIL	79,6 ^B	20,3 ^A
IVL	80,7 ^{AB} 79,8 ^B 79,6 ^B 84,2 ^A	15,9 ^B 20,0 ^A 20,3 ^A 16,2 ^B

Médias seguidas pela mesma letra na coluna não diferem significativamente (P>0,05).

TABELA 3. Médias de umidade relativa do ar (UR%) e temperatura do ar (TA em°C) de acordo com o mês.

MÊS	UR	TA
1	80,4 ^A	19,2 ^A
2	81,0 ^A	17,9 ^B
3	81,8 ^A	17,2 ^B

Médias seguidas pela mesma letra na coluna não diferem significativamente (P>0,05).

TABELA 4. Médias de umidade relativa do ar (UR%) e temperatura do ar (TA em°C), entre PC e SC.

CAMA	UR	TA
PC	80,2 ^A	17,9 ^A
SC	81,9 ^A	18,4 ^A

Médias seguidas pela mesma letra na coluna não diferem significativamente (P>0,05). **PC** (primeiras camas, lotes I e II) e **SC** (segundas camas, lotes III e IV). **UR** (umidade relativa do ar), **TA** (temperatura ambiente).

TABELA 5. Comparação das médias de médias de umidade relativa do ar (UR%) e temperatura do ar (°C), através do uso de contrastes ortogonais (teste de Schefeé), entre NC e VC.

CAMA*	UR	TA
NC	80,0 ^A	18,3 ^A
VC	82,1 ^A	18,0 ^A

Médias seguidas pela mesma letra na coluna não diferem significativamente (P>0,05). **NC** (camas novas, lote I e III) com **VC** (camas velhas, lotes II e IV). **UR** (umidade relativa do ar), **TA** (temperatura ambiente).