

Universidade Federal de Pelotas Faculdade de Veterinária Núcleo de Pesquisa, Ensino e Extensão em Pecuária www.ufpel.edu.br/nupeec

AVALIAÇÃO DA RETENÇÃO HEPÁTICA DE COBRE DIETÉTICO EM CORDEIROS DA RAÇA TEXEL SUPLEMENTADOS COM MINERAIS ANTAGONISTAS E SUBMETIDOS A UM REGIME DE DEPLEÇÃO DE COBRE

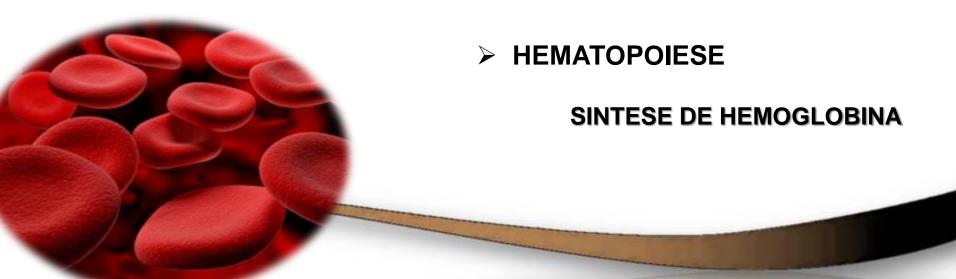
Colaboradores: Flávia Amaral — Mestranda em Zootecnia Lucas Hasse — Graduando em Veterinária

Pelotas, 19 de agosto de 2015

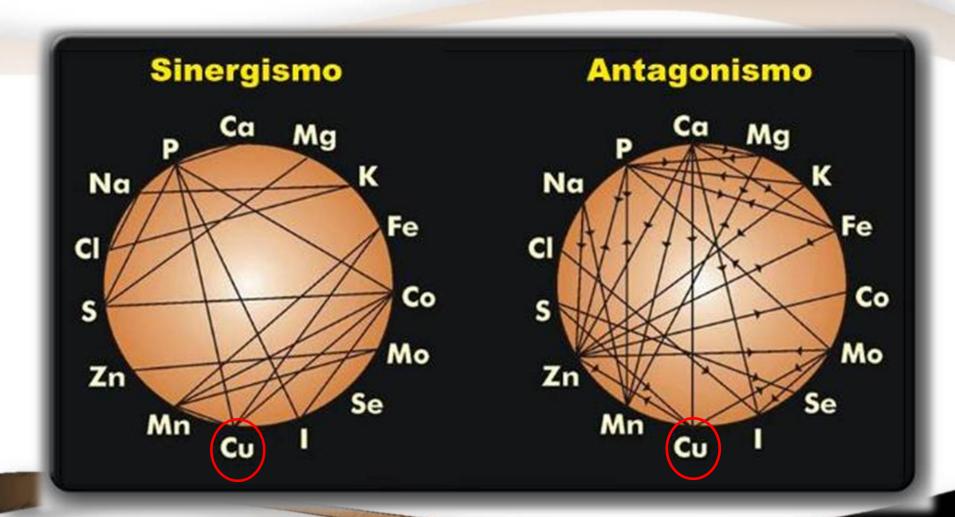
MINERAIS

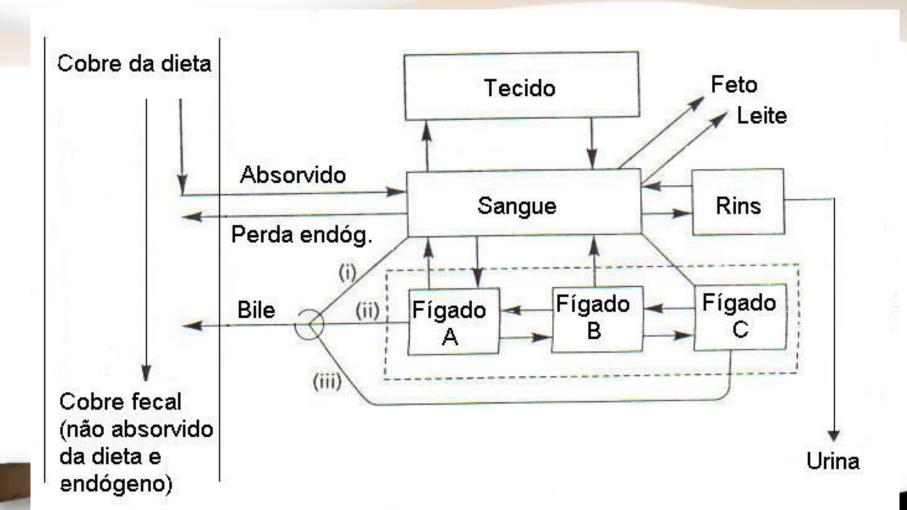
> MICRO-MINERAIS

1A		N.	letais alca	dinos		Metair	renrese	ntativos	Cls	ólido							8A
1 H	Metais alcalino-terrosos				Metais representativos Semi-metais			Hg Líquido								2 He	
Hidrogéni 3 Li	2A 4 Be	Metais de transição Lantanídeos				Não-metais Halogênios			Rf Desconhecido			3A 5 B	4A 6 C	5A 7 N	6A 8 0	7A 9 F	10 Ne
Litio 11	Berilio 12	Actinídeos			Gases nobres						Boro 13	Carbono 14	Nitrogênio	Oxigênio 16	Flúor 17	Neônio 18	
Na Sódio	Mg Magnésio	3B	4B	5B	6B	7B	Γ	8B		TE	2B	Al Aumínio	Si Sificio	P Fósforo	S Enxofre	CI Cloro	Ar Argônio
19 K Potássio	Ca Cálcio	21 Sc Escândio	22 Ti Titânio	23 V Vanádio	Cr Crômo	25 Mn Manganês	26 Fe Ferro	27 Co Cobalto	28 Ni Niquel	29 Cu Cobre	30 Zn Znco	Ga Gálio	Ge Germânio	33 As Arsênio	34 Se Selênio	35 Br Bromo	36 Kr Cripitônio
37 Rb Rubidio	38 Sr Estrôncio	39 Y Itrio	40 Zr Zircônio	41 Nb Nióbio	42 Mo Molibdênio	43 Tc Tecnécio	44 Ru Rutênio	45 Rh Ródio	46 Pd Paládio	A7 Ag Prata	48 Cd Cádmio	49 In Indio	50 Sn Estanho	51 Sb Antimônio	52 Te Telúnio	53 lodo	54 Xe Xenônio
55 Cs Césio	56 Ba Bário	57-71 *	72 Hf Háfnio	73 Ta Tântalo	74 W Tungstênio	75 Re Rênio	76 Os _{Ósmio}	77 Ir Iridio	78 Pt Platina	79 Au ouro	80 Hg Mercúrio	81 TI Tálio	82 Pb Chumbo	83 Bi Bismuto	84 Po Polônio	85 At Astato	86 Rn Radônio
87 Fr Frâncio	88 Ra Rádio	89-103 **	104 Rf Rutherfó	105 Db Dúbnio	106 Sg Seabórgio	107 Bh Bóhrio	108 Hs Hássio	109 Mt Meitnério	110 Ds Damstádio	111 Rg Roentgênio	112 Cn Copemicio	113 Uut Ununtrio	114 Uuq Ununquádio	115 Uup Ununpentio	116 Uuh Ununhéxio	117 Uus Ununséptio	118 Uuo Ununéctio
Nº Atôrnico		*	57 La	58 Ce	59 Pr Prassodimio	60 Nd Neodimio	61 Pm Promécio	62 Sm Samário	63 Eu Európio	64 Gd Gadofinio	65 Tb Térbio	66 Dy Disprósio	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Simbolo Nome		89 Ac Actínio	90 Th	91 Pa Protactinio	92 U	93 Np Neptúnio	94 Pu Plutônio	95 Am Americio	96 Cm	97 Bk Berguélio	98 Cf Califórnio	99 Es	100 Fm	101 Md Mendelévio	102 No Nobélio	103 Lr
e-:	-	1	Petitio	10110	Trotacinio	Oranio.	respectito	Hatolilo	Zamilion	Cuito	parquano			aperio			



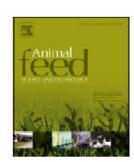
COBRE (Cu +2)


FUNÇÃO ENZIMÁTICA
METALOENZIMAS


ANTIOXIDANTE

MINERAIS

MINERAIS


Animal Feed Science and Technology 173 (2012) 194 200

Contents lists available at SciVerse ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Control of hepatic copper retention in Texel ram lambs by dietary supplementation with copper antagonists followed by a copper depletion regimen

N.F. Suttle*

Moredun Foundation, Pentlands Science Park, Penicuik EH26 OPZ, UK

Fator de impacto: 2.109

INTOXICAÇÃO POR COBRE

> RAÇAS MAIS VULNERÁVEIS A INTOXICAÇÃO

> NÍVEIS FISIOLÓGICOS

DIETA CONCENTRADO

COPRODUTOS

VOLUMOSO

MINERAIS

Efeito dos antagonistas na absorção de Cu

MOLIBDÊNIO - ENXOFRE - ZINCO

OBJETIVOS

AVALIAR O PODER QUELANTE DO Mo, S, Zn, SOBRE O Cu DIETÉTICO EM NÍVEIS PERMETIDOS PELA LESGILAÇÃO EUROPEIA NA FORMULAÇÃO DE RAÇÃO PARA OVINOS.

AVALIAR A REVERSÃO DA HEPATOXICIDADE POR MEIO DE UMA DIETA DE DEPLAÇÃO DE COBRE.

> ANIMAIS:

12 cordeiros Texel / 2 grupos

Peso vivo inicial: 49,6 ± 2,29 Kg

Seleção: nível plasmático Cu (11,8 – 24,3 µmol/L)

Avaliação Cu hepático: 272 – 706 mg/Kg MS

> DIETA:

Ração peletizada: Pré-mistura

Co-Produto de destilaria - DDGS

> DIETA:

Pré-mistura com minerais antagonistas

Dividida em dois lotes

A: 2 mg/kg Molibdato, 3000 mg/kg S (pó) e 250 mg/kg de sulfato de zinco

O: sem antagonistas

	Mineral concentration (mg/kg DM)								
	Cu	Fe	Mo	S	Zn				
Group O	25.6	395	0.3 (e)a	2000 (e)	181				
Group A	22.5	405	2.5 (e)	5400 (e)	452				

96 dias

- ➢ OFERTA:
 1 Kg de ração + 0,100 kg feno / 2 x ao dia
 - 2 SEMANAS 2kg DE RAÇÃO + 0,200 Kg FENO
 - 27 DIAS OFERTA DE 1,400Kg RAÇÃO E 0,300 Kg FENO
 - Sobras coletadas diariamente;
 - > Aferição peso vivo: 0, 26, 61 e 96 dias

Dieta de depleção de Cobre:

Cu: 3 - 5 mg/Kg MS

1 Kg/dia grão de **cevada** revestidos com uréia vitaminas, minerais

22 semanas

Antagonista: enxofre gesso (CaSo4 . 2H2O)

CaSo4.2H2O x CH4N2O

COLETAS E ANÁLISES:

- > Cupremia
- > GGT
- > Biópsia Hepática: Cu
- > GDH
- > AST

Período de depleção

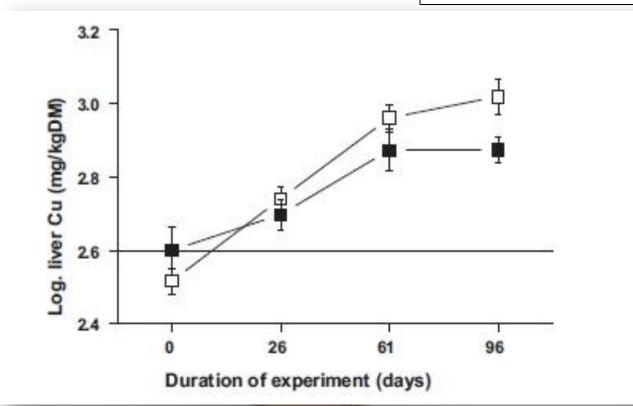
RESULTADOS

Ganho de peso (Kg):

➤ Ganho médio diário: 0,177 Kg PV (p< 0,001)

Inicial: 49,1 Kg PV Final: 66,5 Kg PV

Peso do fígado (MS):


Variou de 255 g /Kg MS para 344 g/Kg MS

Grupo O: maior peso

RESULTADOS

Concentração média de Cobre hepático:

Intoxicação: níveis superiores a 500 mg/Kg MS (Riet-Correa, et. al, 2007)

(P < 0.05)

RESULTADOS:

Limite fisiológico: 44 UI/L (Suttle, 2010)

Atividade GGT:

Interação tempo X grupo (P< 0.01)

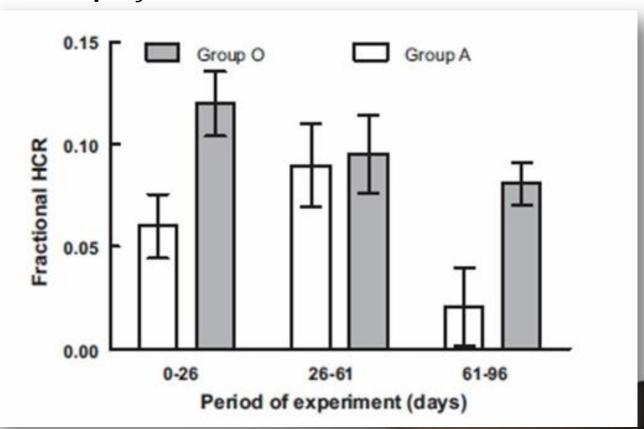
RESULTADOS:

Cupremia: valores normais 9,3 a 20 µmol/l

Nível de Cu plasmático:

GRUPO O X GRUPO A

- ➤ Não houve diferença ente os grupos
- ➤ Não houve correlação entre níveis:


Cu plasmático x atividade GGT x Cu hepático

Aos 96 dias: Grupo O (15,7 ± 0.96 μmol/l) e Grupo A (13.9 ± 0.50μmol/l)

RESULTADOS

Eficiência dieta de depleção:

RESULTADOS

Eficiência dieta de depleção:

> Ganho de peso:

Inicial: 59 – 75 Kg PV

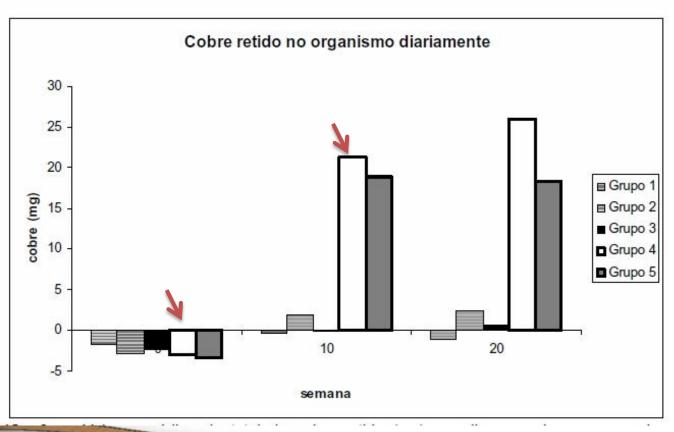
Cupremia: valores normais 9,3 a 20 µmol/l

Final: 70 – 93 Kg PV

GGT: Grupo O ($35 \pm 3.3 \text{ UI/L}$) Grupo A ($29 \pm 1.1 \text{ UI/L}$)

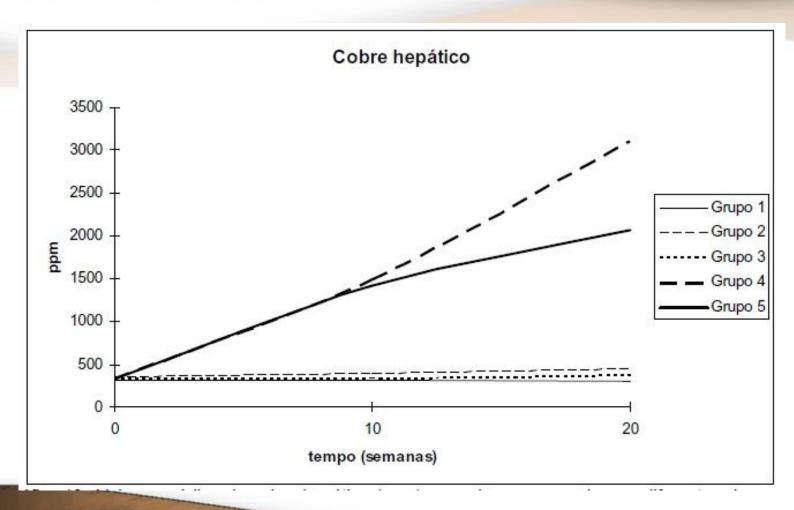
Cupremia: Grupo O (13.2 \pm 0.71 μ mol/l) Grupo A (13.9 \pm 1.04 μ mol/l)

Antagonistas x Absorção de Cu:


Maior eficiência na absorção de Cu e RCH ocorre na fase inicial de acréscimo do mineral na dieta (Woolliams et al., 1983).

➤ A ação antagonista dos minerais da dieta, apresentou melhor resposta a partir dos 26 dias de suplementação nos valores de RCH, se comparado ao grupo controle.

OUTROS RESULTADOS:


- > Mo
- Níveis crescentes de Cu

Ingestão (mg) de Cu

p< 0,05

OUTROS RESULTADOS:

p< 0,05

0.15 Group O Group A 9 0.10 Group A 0.00 Group A

Antagonistas x Absorção de Cu: Hipóteses

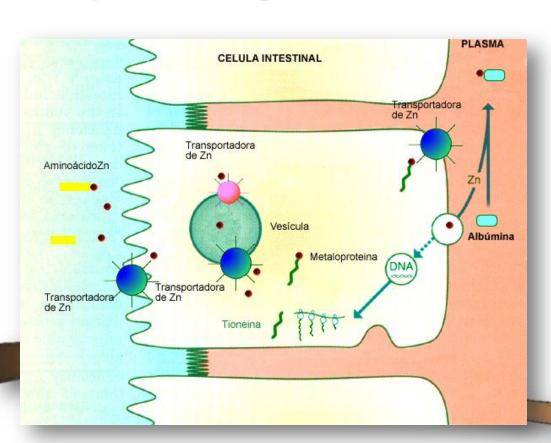
- As concentrações de cobre dietético , representaram com precisão as quantidades relativas de Cu consumido pelos grupos;
- A composição mineral do feno (desconhecida), não contribuiu para aumentar a retenção de Cu hepático;
- 3. A diferença entre os grupo pode ter sido subestimada, porque não foi adicionado cobre a ração.

Raças puras Texel apresentam maior retenção de Cu hepático em comparação a outras raças ovinas (Suttle et al., 2002)

Estudo realizado com oito raças e cruzamentos de ovinos, submetidos a uma dieta rica em cobre e com baixo nível de antagonistas, apresentou menor RCH do que animais da raça Texel (Woollians et al., 1983)

RETENÇÃO COBRE HEPÁTICO X TEMPO:

RCH 26 d ao 96 d



Secreção biliar Cu

Grupo A

Zn: poder antagonista

Poder de inibir absorção intestinal: metalotioneína

Ação específica do Zn?

OUTROS RESULTADOS:

Evaluation of a commercially available molybdate formulation and zinc oxide boluses in preventing hepatic copper accumulation and thus enzootic icterus in sheep

C J Botha^a, A S Shakespeare^b, R Gehring^a and D van der Merwe^a

Available online at www.sciencedirect.com

The Veterinary Journal 170 (2005) 332-338

www.elsevier.com/locate/tvjl

Intracellular distribution of copper and zinc in the liver of copper-exposed cattle from northwest Spain

Marta López-Alonso ^{a,*}, Felipe Prieto ^b, Marta Miranda ^c, Cristina Castillo ^a, Joaquín R. Hernández ^a, José Luis Benedito ^a

Ortolani et al (2003)

RELAÇÃO ENTRE GGT PLASMÁTICA E CONCENTRAÇÃO DE COBRE HEPÁTICO

ADIÇÃO DE ANTAGONISTAS, REDUZIU O AUMENTO DE GGT PLASMÁTICA

ESGOTAMENTO DO ACÚMULO DE COBRE HEPÁTICO

- ADIÇÃO DOS ANTAGONISTAD NÃO IMPEDIU O AUMENTO DA CONCENTRAÇÃO DE COBRE NO FÍGADO, CONTRIBUI PARA REDUÇÃO DO COBRE DISPONÍVEL NA DIETA.
 - FORMULAÇÃO DA DIETA A BASE DE GRÃOS INTEIROS DE CEVADA COM ACRÉSCIMO DE ENXOFRE E BAIXOS NIVEIS DE Cu

INDICADORES DE HEPATOTOXICIDADE- GDH

AST X GGT

A GGT apresenta aumento precoce durante a fase pré-hemolítica da 1º a 3º semana pré-intoxicação (Lemos et al., 1997)

AST pode derivar de falsas atividades elevadas, derivadas de lesões musculares ou não hepáticas (Suttle, 1995)

TRABALHOS NO NUPEEC

Effect of butaphosphan and cyanocobalamin on postpartum metabolism and milk production in dairy cows

R. A. Pereira^{1†}, P. A. S. Silveira¹, P. Montagner¹, A. Schneider¹, E. Schmitt^{1,2}, V. R. Rabassa¹, L. F. M. Pfeifer^{1,2}, F. A. B. Del Pino^{1,3}, M. E. Pulga⁴ and M. N. Corrêa¹

¹Núcleo de Pesquisa, Ensino e Extensão em Pecuária (NUPEEC), Departamento de Clínicas Veterinária, Universidade Federal de Pelotas, CEP: 96010-900, Pelotas, Rio Grande do Sul, Brazil; ²Centro de Pesquisa Agroflorestal de Rondônia — Embrapa CPAF, BR 364 - Km 5,5 - Zona Rural, Caixa Postal 127 - CEP 76815-800, Porto Velho, Rondônia, Brazil; ³Departamento de Bioquímica, Universidade Federal de Pelotas, CEP: 96010-900, Pelotas, Rio Grande do Sul, Brazil; ⁴Bayer S. A. Animal Health, Rua Domingos Jorge, 1100 - Prédio 9701, CEP: 04779-900, São Paulo, SP, Brazil

Predictive value of prepartum serum metabolites for incidence of clinical and subclinical mastitis in grazing primiparous Holstein cows

Elizabeth Schwegler, Augusto Schneider, Paula Montagner, Diego Andres Velasco Acosta, Luiz Francisco Machado Pfeifer, et al.

Noune 45 - Number 3 - Harsh 2013

Tropical Animal Health and Production

ISSN 0049-4747

Trop Anim Health Prod DOI 10.1007/s11250-013-0398-z Tropical
Animal Health
and Production

Protocolos terapêuticos com enrofloxacino de rápida ação e reposição eletrolítica e energética em casos de diarreia e broncopneumonia neonatal bovina

CONCLUSÃO

 ADIÇÃO DOS MINERAIS ANTAGONISTAS NA DIETA FOI EFICAZ PARA EVITAR INTOXICAÇÃO CÚPRICA, NO ENTANTO NÃO REDUZIU OS NIVEIS DE DEPOSIÇÃO DE COBRE HEPÁTICO

 A DIETA DE DEPLEÇÃO REDUZIU O RISCO DE HEPATOXICIDADE NOS ANIMAIS.

O que faltou?

- > PADRONIZAR OS NÍVEIS DE COBRE NA DIETA
- > DESAFIO DOS ANIMAIS A ADAPTAÇÃO DA DIETA
- > AVALIAÇÃO LIQUIDO RUMINAL
- > NÍVEIS PLASMÁTICOS DE CERULOPLASMINA

