

Universidade Federal de Pelotas Faculdade de veterinária Núcleo de Pesquisa, Ensino e Extensão em Pecuária

Estágio Extracurricular Supervisionado Nutron e Cooperagri

Apresentação: Jênifer Hollmann
Orientadores de campo: Fabiano Terra e Cristiana Baruel Terra
18 de Junho de 2014

Cooperagri

Cristiana Baruel Terra

- Fábrica de rações
- Avaliação da matéria prima
- Visitas técnicas

Boas Praticas de Fabricação

Nutron

Fabiano Terra
 (Coordenador Técnico e Comercial)

Visitas técnicas (propriedades e empresas)

Formulação de dietas

Visitas técnicas - Nutron

Fabricas de Rações

Comércio (agropecuárias)

Propriedades rurais

Vendas dos produtos

Análises e formulações de dietas

Assistência técnica

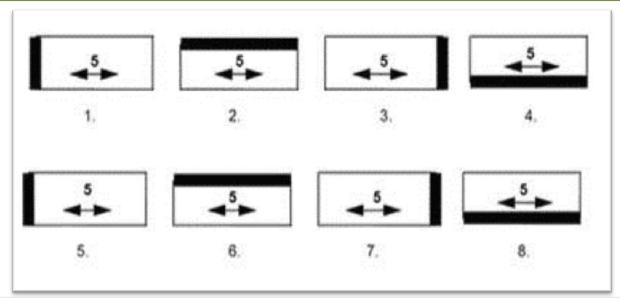
nupeec

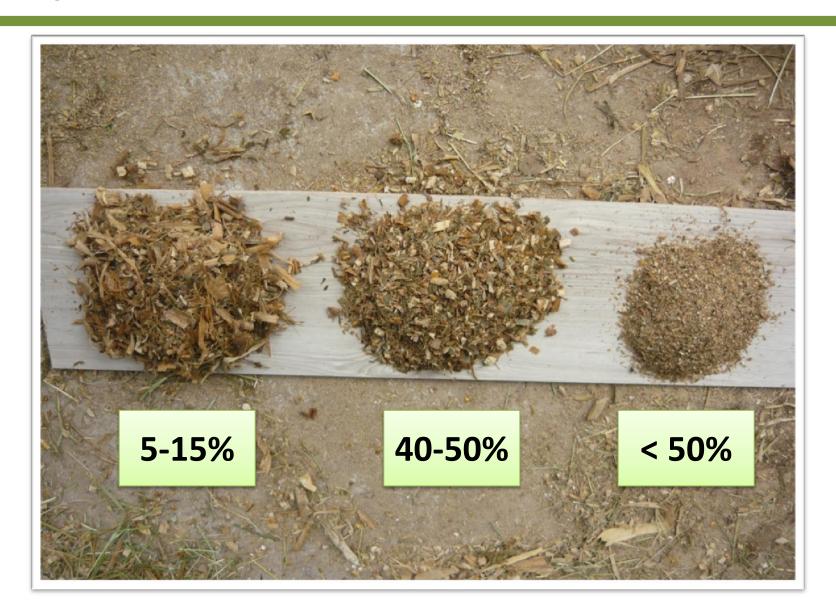
Visitas técnicas - Nutron

- Avaliação da dieta total
 - Dieta homogênea e equilibrada
 - Observava estado físico geral das vacas (mastigação)

Avaliação das fezes

Dieta total - SPPS





nupeec

nupeec

Universidade Federal de Pelotas Faculdade de veterinária Núcleo de Pesquisa, Ensino e Extensão em Pecuária

A influência do tamanho de partícula da dieta total de vacas leiteiras na atividade ruminal.

Apresentação: Fernanda Tomazi e Jênifer Hollmann Orientadoras: Camila Pizoni e Maria Amélia Agnes Weiller 18 de Junho de 2014

- J. Dairy Sci. 87:3912-3924
- © American Dairy Science Association, 2004.

Effects of Alfalfa Particle Size and Specific Gravity on Chewing Activity, Digestibility, and Performance of Holstein Dairy Cows

A. Teimouri Yansari,^{1,*} R. Valizadeh,¹ A. Naserian,¹ D. A. Christensen,²

P. Yu,² and F. Eftekhari Shahroodi¹

¹Department of Animal Science, Agricultural Faculty,

Ferdowsi University of Mashhad, Iran

²Department of Animal and Poultry Science,

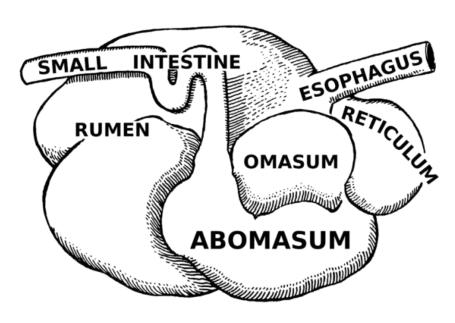
University of Saskatchewan, 51 Campus Drive,

S7N5A8, Saskatoon, Canada

F.I.: 2,566

Objetivo

O objetivo desse estudo foi determinar os efeitos de diferentes tamanhos de partículas nas dietas de vacas leiteiras através da avaliação da atividade de mastigação, os parâmetros ruminais, digestibilidade e desempenho de lactação



Introdução

- De acordo com a atividade ruminal, qual é a importância da fibra na dieta?
 - Estimula mastigação
 - Estimula salivação
 - Efeito tamponante = pH
 - Motilidade

Fonte energia

- Importância do tamanho de partícula na dieta de ruminantes?
 - Aumentar ou diminuir taxa de passagem
 - Aumentar ou diminuir digestibilidade
 - •E a produção de leite?

9 animais divideem 3 grupos

- Dieta: 60% concentrado e 40% volumoso
- (% de matéria seca)
 - 20 % feno de alfafa
 - 20 % silagem de milho
 - 35 % cevada
 - 7 % farelo de soja
 - 7.5 % polpa de beterraba
 - 10 % farelo de trigo
 - 0.3 % fosfato de dicálcico
 - 0.1 % premix de vitaminas
 - 0.1 % sal mineral

- Partículas
 - ○Pequena(1,14mm)
 - ○Média(4,04mm)
 - ○Grande(7,83mm)

Tamanho da partícula foi avaliado com SPPS

• Ingestão de M.S. (dieta inicial - sobras)

 pH: Coleta de 50 mL de líquido ruminal por ruminocentese

 Taxa de passagem e retenção (marcador de cromo) – análise de fezes

Digestibilidade: análise das fezes totais

Fibra detergente neutro

Mastigação: observação durantes 3 dias

Avaliação da composição do leite

Amostras de leite coletados durante 5 dias
 (50mL pela manhã e 50mL pela tarde)

- Gordura, proteínas, lactose, caseína e sólidos totais

O que ocorre

com a redução

da partícula da

dieta total?

INGESTÃO DE MATÉRIA SECA

> INGESTÃO DE FDN

> > RUMINAÇÃO E MASTIGAÇÃO

> > > pH RUMINAL

Redução da partícula:

Aumenta ingestão de matéria seca e FDN

Tabela 1: Ingestão de matéria seca e FDN:

	Long	Medium	Fine
Intake (kg/d) DM OM NDF	21.26^{b} 19.29^{b} 7.02^{b}	$22.64^{ m b} \ 20.55^{ m b} \ 7.47^{ m b}$	1 24.81 ^a 22.81 ^a 8.19 ^a

Tempo de ruminação e mastigação

Tabela 2: Atividade ruminal e de mastigação em vacas de acordo com as dietas

	Total mixed ration containing alfalfa		
Activity	Long	Medium	Fine
Eating (min/d) Rumination (min/d) Total chewing activity (min/d)	257.8^{a} 338.9^{a} 596.7^{a}	232.8^{ab} 286.1^{b} 518.9^{b}	209 4 ^b 236.1 ^c 445.5 ^c

pH ruminal, taxa de passagem e retenção ruminal

Tabela 3: Parâmetros ruminais

	Long	Medium	Fine
pH Rumen passage rate (%/h) Rumen mean retention time (h)	6.58^{a} 2.93^{b} 34.14^{a}	6.59^{a} 3.00^{b} 33.37^{a}	$6.12^{\rm b} \ 3.28^{\rm a} \ 30.67^{\rm b}$

- ↑ taxa de passagem ruminal
- ↓ retenção ruminal

• Digestão ----

Reduz com a redução da partícula

FDN teve sua efetividade física reduzida

- Desempenho produtivo
 - Não alterou o volume de produção

Alterou a composição do leite

Tabela 4: Composição do leite de acordo com tamanho de partícula

	Long	Medium	Fine				
Milk and its composition production (kg/d)							
Composition (%)							
Fat	3.21^{a}	3.15^{a}	2.88 ^b				
Protein	$3.57^{\rm b}$	$3.61^{\rm b}$	3.76 ^a				
Lactose	4.69	4.67	4.69				
Casein	$2.47^{\rm b}$	2.49^{b}	2.59^{a}				
Noncasein protein	$0.12^{\rm b}$	0.15^{b}	0.16^{a}				
True protein	$2.61^{\rm b}$	$2.64^{\rm b}$	$2.75^{\rm b}$				
NPN	$0.96^{\rm b}$	$0.97^{\rm b}$	1.01^{a}				
Total solid	11.48	11.43	11.33				

Conclusão

 A redução do tamanho das partículas da dieta total diminuiu o tempo de mastigação total, alterou parâmetros ruminais (diminuição do pH), reduziu a digestibilidade e alterou composição do leite, demonstrando que é importante considerar o tamanho da partícula quando se formula uma dieta.

Considerações finais

Trabalhos do NUPEEC

Trabalho: Jóice e Flávia

Viabilidade zootécnica e ambiental da utilização de coprodutos do processo de vitivinificação na alimentação animal.

- Dificuldade = forma de administração desses produtos
- Sugestão = testar diferentes tamanhos de partículas

