

EFEITO DA ADUBAÇÃO E TIPO DE EXTRAÇÃO NA QUALIDADE DO TANINO DA CASCA DE AROEIRA-VERMELHA (Schinus terebinthifolius Raddi)

SILVA, Liliane Costa da¹; FERREIRA, Érika da Silva^{2;} FURLAN, Lígia^{3;} OLIVEIRA, Miguel Pinto de⁴; KOSBY, Roseméri Vieira⁵

- ¹ Acadêmica do curso de graduação em Engenharia Industrial Madeireira, Centro de Engenharias, UFPel; liliane-costa@hotmail.com;
 - ² Orientadora, Engenharia Industrial Madeireira, Centro de Engenharias UFPel; erikaferreira@ufpel.edu.br;
 - ³ Colaboradora, Centro de Ciências Químicas, Farmacêuticas e Alimentos– UFPel;
- ⁴ Colaborador, Instituto de Ciências Humanas, Departamento de Geografia UFPel;
- ⁵Técnica em Química, Curso de Engenharia Industrial Madeireira, Centro de Engenharias UFPel; rosekosby@hotmail.com;

1 INTRODUÇÃO

De acordo com Durigan et al. (2002), a espécie aroeira-vermelha pertence à família Anacardiaceae e possui outros nomes comuns, tais como: aroeira pimenteira e aroeira mansa, sendo uma árvore pioneira de pequeno porte (5 – 10 m), ocorrendo associada a diferentes formações florestais desde o Nordeste ao Sul do Brasil. Não possui valor comercial significativo no país, sendo seus frutos apreciados como condimento na Europa, conhecido com o nome de pimenta rosa.

A madeira desta essência é moderadamente pesada, medianamente dura, possui textura média, bastante resistente e de grande durabilidade natural sendo empregada para produção de moirões, esteios, lenha e carvão (LORENZI, 1998).

Nas últimas décadas algumas pesquisas têm direcionado o uso medicinal do extrato da casca e folha da aroeira-vermelha devido a suas propriedades antiinflamatórias e cicatrizantes que reside principalmente pela presença de taninos em sua composição química.

Os taninos se classificam quimicamente em hidrolisáveis e condensados, onde os primeiros são misturas de fenóis simples como o pirogalol e ácido elágico e de açúcares esterificados, principalmente a glicose, com ácidos gálicos e digálicos, sofrendo hidrólise ácida, alcalina ou enzimática (PIZZI, 1983). Entretanto, de acordo com Wissing (1955) apud Ferreira (2004), os taninos condensados são formados por unidades de flavonóide (flavan 3-4 diol e flavan 3-ol) em vários graus de condensação (dependem do tipo e da origem do tanino), não sofrem hidrólise e se precipitam com formaldeído e ácido clorídrico, segundo a reação de Stiasny.

Desta forma, os taninos são considerados substâncias polifenólicas que aparecem em quase todas as plantas superiores em diferentes quantidades. A qualidade desta substância depende do tipo de extração empregada para produzi-lo. Assim, as condições de extração podem ser otimizadas objetivando a produção de extratos com propriedades adequadas à síntese de adesivos. A extração industrial dos taninos é feita normalmente com água quente em presença de baixas concentrações de sais capazes de melhorar a eficiência do processo em termos de quantidade e qualidade dos taninos extraídos. Os sais mais utilizados são sulfito, bissulfito e carbonato de sódio (PIZZI, 1983; CHEN, 1991; TOSTES, 2003 apud FERREIRA, 2004).

De todos os adesivos à base de substâncias naturais, o tanino representa um dos melhores substitutos para as resinas termofixas sintéticas convencionalmente empregadas para colagem de produtos à base de madeira. A

utilização da casca de aroeira-vermelha seria uma forma de potencializar o uso de uma matéria-prima totalmente renovável tendo aproveitamento a nível industrial, obtendo-se como produto final um adesivo ecologicamente correto.

Desta forma, pode-se potencializar a utilização econômica da casca e ainda reutilizá-las posteriormente para geração de energia ou para outros fins, tais como, produção de composto orgânico para adubação de mudas. Neste contexto, a atual investigação científica teve o objetivo de caracterizar os taninos condensáveis da casca de aroeira-vermelha avaliando o efeito do tipo de adubação e forma de extração no potencial de uso desta substância como adesivo para produtos à base de madeira.

2 MATERIAL E MÉTODOS

As cascas de aroeira-vermelha (*Schinus terebinthifolius Raddi*) foram coletadas em um povoamento experimental de 4 anos de idade, implantado com espaçamento 3 x 2 m, em uma área total de 2300 m², localizado na Fazenda Experimental da Embrapa – Agroecologia, Campus da UFRuralRJ, no município de Seropédica – RJ. Para o desenvolvimento desta pesquisa foram avaliadas árvores com diferentes dosagens de adubação mineral e inoculação de micorriza, sendo cada tratamento, no campo, caracterizado por um bloco constituído de 3 parcelas e cada parcela com 16 árvores . Nas parcelas foram selecionadas aleatoriamente seis árvores, sendo em seguida podadas e suas cascas removidas com auxílio de estilete. Posteriormente, as amostras foram secas ao ar livre, fragmentadas em moinho tipo Willey, peneiradas e armazenadas em sacos plásticos.

As extrações e caracterização química dos taninos condensados foram realizadas no Laboratório de Painéis de Madeira – LAPAM da Universidade Federal de Pelotas – UFPel. Para avaliação da melhor forma de extração dos taninos condensados, as cascas de aroeira-vermelha foram submetidas a tratamentos com sulfito de sódio a 2,5 % e 5%. O material foi extraído em balões sob refluxo por 3 horas, empregando-se uma razão licor:casca de 15:1. Após a extração, o material foi filtrado a vácuo utilizando-se um funil de Büchner com papel filtro e o extrato armazenado em recipientes plásticos, sendo condicionados sob refrigeração, para posterior análise.

Para cada tratamento foi determinado o teor de extrativos, teor de tanino, reatividade – número de Stiasny, teor de não tanino e pH, sendo as análises realizadas em duplicata, quando havia material suficiente. O delineamento experimental empregado nesta pesquisa está apresentado na Tab. 1.

Tabela 1. Delineamento experimental utilizado para avaliação dos taninos da aroeira-vermelha

TRATAMENTO	TIPO DE ADUBAÇÃO	TIPO DE EXTRAÇÃO			
T11	Sem adubação	Água			
T12	Sem adubação	Água + 2,5% Na₂SO₃			
T13	Sem adubação	Água + 5% Na₂SO₃			
T21	23,4g de superfosfato	Água			
T22	23,4g de superfosfato	Água + 2,5% Na₂SO₃			
T23	23,4g de superfosfato	Água + 5% Na₂SO₃			
T31	46,28g de superfosfato	Água			
T32	46,28g de superfosfato	Água + 2,5% Na₂SO₃			
T33	46,28g de superfosfato	Água + 5% Na₂SO₃			
T41	92,56g de superfosfato	Água			

200		
T42	92,56g de superfosfato	Água + 2,5% Na ₂ SO ₃
T 43	92,56g de superfosfato	Água + 5% Na₂SO₃
T51	Inoculação com micorriza	Água
T52*	Inoculação com micorriza	Água + 2,5% Na₂SO₃
T53	Inoculação com micorriza	Água + 5% Na₂SO₃
T61	Micorriza + 23,14g de superfosfato	Água
T62	Micorriza + 23,14g de superfosfato	Água + 2,5% Na ₂ SO ₃
T63	Micorriza + 23,14g de superfosfato	Água + 5% Na₂SO₃
T71	Micorriza + 46,28g de superfosfato	Água
T72	Micorriza + 46,28g de superfosfato	Água + 2,5% Na₂SO₃
T73	Micorriza + 46,28g de superfosfato	Água + 5% Na₂SO₃
T81	Micorriza + 92,56g de superfosfato	Água
T82	Micorriza + 92,56g de superfosfato	Água + 2,5% Na₂SO₃
T83	Micorriza + 92,56g de superfosfato	Água + 5% Na₂SO₃

^{*}parcela perdida

3 RESULTADOS E DISCUSSÃO

A Tab. 2 apresenta os valores médios do teor de extrativos (TE), teor de taninos condensados (TT), teor de não taninos (NT), reatividade do tanino – número de Stiasny (NS) e valor pH encontrados para as diferentes dosagens de adubação e formas de extração da casca de aroeira-vermelha.

Tabela 2. Valores médios para as propriedades químicas dos extratos encontrados para as diferentes dosagens de adubação e formas de extração da casca de aroeira-vermelha

Tratament	to	TE (%)	TT (%)		NT (%)	NS (%)		рН
11		28,32	23,60		4,72	83,34		4,62
12		39,63	31,96		7,66	80,66		4,94
13		47,50	35,67		11,84	75,05		4,93
21		25,13	20,22		4,91	80,46		4,53
22		38,00	31,00		6,99	81,59		5,04
23		45,54	33,64		11,89	73,87		4,70
31		26,86	21,11		5,76	78,60		4,61
32		39,70	31,36		8,33	79,01		5,12
33		47,41	35,55		11,85	75,00		5,03
41		22,10	16,54		5,56	74,85		4,49
42		32,78	25,45		7,32	77,65		4,99
43		42,99	30,88		12,11	71,83		4,60
51		19,24	14,50		4,74	75,32		4,47
53		44,59	32,72		11,87	73,38		4,99
61		25,76	20,60		5,17	79,94		4,2
62		38,51	31,42		7,09	81,60		4,91
63		42,71	34,70		8,01	81,24		4,98
71		27,92	22,44		5,48	80,97		10,11
72		37,86	34,62		3,24	91,77		5,05
73		47,52	36,59		10,93	77,02		5,01
81		26,95	22,05		4,90	81,81		4,59
82		38,52	31,98		6,53	83,0		4,85
83		48,02	37,28		10,74	77,62		5,02
	O	la.~~.	 1	سا ا		 	-1-	~

Com relação aos teores de extrativos, ocorreu uma elevação nos tratamentos onde a extração foi realizada com água e 5% Na₂SO₃, sendo que a

incorporação de adubação fosfatada em conjunto com a inoculação de micorriza proporcionou a mesma tendência de elevação nos teores de extrativos quando comparados ao tratamento testemunha.

Também ficou evidente que a adição gradual de sulfito de sódio ao processo de extração apresentou uma tendência de elevação nos teores de taninos condensáveis, não taninos e número de Stiasny. Os resultados mais promissores foram encontrados em tratamentos sem adubação e nos inoculados com micorriza, direcionando a influência positiva por meio do trato silvicultural desta essência como potencial para produção de tanino.

Analisando isoladamente o número de Stiasny, observa-se que a espécie aroeira-vermelha apresentou uma reatividade satisfatória do tanino condensado frente ao formaldeído, constatando sua potencialidade para produção de adesivos para colagem de produtos à base de madeira.

De acordo com Iwakiri (2005), o pH do adesivo não deve ultrapassar a faixa de 2,5 a 11, para não resultar em degradação da madeira. Desta forma, os valores observados para pH estão dentro do limite mencionado pelo autor e de acordo com o caráter ácido encontrado para extratos tânicos.

4 CONCLUSÃO

Com base nas propriedades químicas observadas nesta pesquisa podese concluir que:

- Os resultados mais satisfatórios foram encontrados no tratamento testemunha e nos inoculados com micorriza;
- ✓ A adição gradual de sulfito de sódio ao processo de extração apresentou uma tendência de elevação nas propriedades das cascas avaliadas;
- ✓ Como fonte de tanino condensado a espécie aroeira-vermelha (Schinus terebinthifolius) é uma alternativa ecologicamente viável para fabricação de adesivos para colagem de produtos à base de madeira.

5 REFERÊNCIAS

DURIGAN, G.; FIGLIOLA, M. B.; KAWABATA, M.; GARRIDO, M. A. O.; BAITELLO, J. B. **Sementes e mudas de árvores tropicais**. São Paulo: Páginas & Letras Editora e Gráfica, 2° Ed. 2002. 65p.

FERREIRA, E.S. **Utilização dos polifenóis da casca de Pinus para produção de adesivos para compensados.** 101f. Dissertação (Mestrado em Ciências Ambientais e Florestais) — Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2004.

IWAKIRI S. Painéis de Madeira Reconstituída. Curitiba: FUPEF, 2005. 247p.

LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. 2° Ed. São Paulo: Editora Plantarum, 1998. 352p.

PIZZI, A. **Wood Adhesives: Chemistry and Technology.** New York: Marcel Dekker, 1983. 364p.

WISSING, A. The utilization of bark II. Investigation of the Stiasny-reaction for the precipitation of polyphenols in Pine bark extractives. **Svensk Papperstidning.** v. 58, n. 20, p. 745-750,1955.