

IDENTIFICAÇÃO DAS ÁREAS COM RISCO DE INUNDAÇÃO NA CIDADE DE PELOTAS - RS

OLIVEIRA, Aline Morales de¹; NUNES, Gabriela Schiavon²; HARTWIG, Marcelo Peske³

¹Instituto Federal sul-rio-grandense, campus Pelotas, Graduanda do curso superior de Tecnologia em Saneamento Ambiental; ²Universidade Federal de Pelotas, Graduanda do curso de Engenharia Sanitária e Ambiental; ³Instituto Federal sul-rio-grandense, campus Pelotas, Professor orientador. marceloph @ifsul.edu.br.

1 INTRODUÇÃO

A cidade de Pelotas, RS por estar situada em uma região plana e baixa apresenta problemas derivados das enchentes.

As inundações tem sua causa principal à urbanização, que propicia uma impermeabilização do solo diminuindo a infiltração. Outros fatores bastante relevantes que causam as enchentes são o desmatamento, a deficiência dos canais de drenagem, e o acúmulo de lixo espalhado nas ruas entupindo bueiros e canais, impedindo a passagem da água da chuva (TUCCI, 2005).

Devido ao grande problema que as inundações causam para as pessoas e o poder público, a alternativa de se criar mapas para a identificação dos locais com risco á inundação têm crescido á cada dia, pois apresenta resultados eficientes que permitem uma gestão mais adequada.

O mapeamento das planícies de inundação através de um SIG consiste basicamente no relacionamento entre o modelo digital de terreno (MDT) da área em estudo, também chamado de modelo numérico de terreno (MNT), e os perfis da linha d'água dos eventos de cheia com diferentes probabilidades de excedência (CPRM, 2004).

Este estudo teve como objetivo o mapeamento das áreas de risco, com a finalidade de localizar inundações no perímetro urbano, para auxiliar a tomada de decisões de ações mitigadoras nessas áreas.

2 METODOLOGIA (MATERIAL E MÉTODOS)

O trabalho foi desenvolvido na cidade de Pelotas/RS, localizada nas margens do Canal São Gonçalo, e apresenta uma área de 186.84 km². Por estar situada numa planície costeira, a área urbana do município situa-se em baixa altitude, em média 7 metros acima do nível do mar. A paisagem da cidade é plana e baixa, com altitudes que diminuem em direção ao Canal São Gonçalo e à Lagoa dos Patos (CARDOSO, 2010).

Foram utilizadas técnicas de geoprocessamento e sensoriamento remoto para a elaboração dos mapas e o cruzamento dos dados. Para a realização deste projeto foi utilizado imagens LandSat TM5 da região de Pelotas RS, nas quais foram processadas pelo software SPRING 5.1.8.

Através das imagens de satélite, foi realizada a classificação de uso e cobertura do município transformando-os em arquivos raster (matrizes) e vetores (linhas) em cinco classes, conforme pode ser observado na Fig. 1.

Com o auxilio de cartas topográficas da cidade, foi elaborado o modelo digital do relevo do município através de modelagem numérica, pela associação de curvas de nível (CN) e pontos cotados (PC), o que tornou possível identificar diferentes altitudes das áreas, vindo compor o modelo numérico do terreno, gerando o mapa altimétrico.

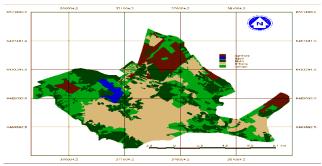


Figura 1 - Mapa de uso e ocupação do perímetro urbano de Pelotas/RS

Com o mapa numérico do terreno e as cartas topográficas delimitou-se o perímetro urbano e o limite de cada bairro do município de Pelotas.

Para a identificação da intensidade máxima de precipitação foi utilizada a distribuição Gumbel em um período de 12 anos de observação conforme equações descritas abaixo:

Cálculo do Tempo de Recorrência:

$$Tr = \frac{n+1}{ordem}$$
 ou $Tr = \frac{1}{1-e^{-e^{-b}}}$

b - variável reduzida

Cálculo da Variável reduzida:

$$b = \frac{\theta_n}{\theta_x} \left[x - \left(\bar{x} - \theta_x \times \frac{y_n}{\theta_n} \right) \right]$$

Onde:

 θ_n - Tabelado

 θ_{r} – Desvio padrão

 y_n - Tabelado

x – Observação

 \bar{x} – Média

Para o trabalho foram utilizadas as intensidades máximas de precipitação de um dia com os tempos de retornos de 2, 5, 10, 20, 25 e 50 anos com duração de 30 minutos.

O trabalho ainda está em desenvolvimento, das quais ainda falta desenvolver a mancha de inundação, na qual vai identificar os locais com risco á inundação.

3 RESULTADOS E DISCUSSÃO

Com base nos mapas altimétricos (MNT), conforme Fig.2, observou-se que a região sul apresenta uma baixa altitude variando de 1 á 5 m, em direção a área norte esta altitude aumenta chegando a 21 m, a divisão destas duas áreas se

dá na área central do município com a cota variando entre 9 e 11 m. Partindo-se da área central em direção a Lagoa dos Patos (área leste) a cota torna a diminuir chegando a 1m. Na direção oeste as elevações tornam a aumentar. As regiões sul e leste apresentam uma baixa altitude por estar situada próximo ao Canal São Gonçalo e a Lagoa dos Patos.

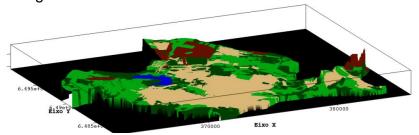


Figura 2 – Modelo numérico do terreno do perímetro urbano de Pelotas

Conforme observado no mapa de uso e cobertura de solo, calculou-se a área ocupada por cada classe estudada conforme Tab. 1.

Tabela 1 - Área de ocupação por classe

Classes	Área (km²)	%	
Campo	59.10	31.63	
Urbano	59.60	31.91	
Mata	47.34	25.34	
Água	3.06	1.63	
Agrícola	17.74	9.49	
Total	186.84	100	

Com o mapa de uso e ocupação pode-se perceber que a área urbana de Pelotas ocupa a maior percentagem do perímetro com 31,91% seguido das áreas ocupadas por campo com 31,63%, indicando a baixa proteção contra inundações.

A área urbana contribui com o selamento superficial enquanto que as áreas de campo contribuem com a alta velocidade de escoamento superficial, uma vez que estes estão localizados nas regiões mais elevadas.

Na Tab. 2 estão representados os dados de precipitações mensais, nas quais foram obtidos pela Estação Agroclimatológica de Pelotas, esses dados foram utilizados para o cálculo das intensidades de precipitações e os tempos de recorrência para serem utilizados nos cálculos das cotas de inundação.

Tabela 2 - Dados médios de precipitações mensais e Cálculo do tempo de retorno

	Precipitação					
Data	(mm)	Ordem	X	Tr	b	Tr
2000	241,200	1,00	491,400	22,00	2,6573	14,7638
2001	261,000	2,00	421,300	11,00	1,9912	7,8357
2002	349,400	3,00	349,400	7,33	1,3080	4,2212
2003	295,800	4,00	295,800	5,50	0,7987	2,7599
2004	491,400	5,00	261,000	4,40	0,4680	2,1486
2005	241,600	6,00	245,100	3,67	0,3169	1,9330
2006	139,400	7,00	241,600	3,14	0,2836	1,8901
2007	226,400	8,00	241,200	2,75	0,2798	1,8853
2008	212,700	9,00	226,400	2,44	0,1392	1,7210
2009	421,300	10,00	212,700	2,20	0,0090	1,5903

50

581,40

684

552,33

649,8

2010	245,100	11,00	171,900	2,00	-0,3787	1,3023	
2011	144,400	12,00	144,400	1,83	-0,6400	1,1766	
2012	171,900	13,00	139,400	1,69	-0,6875	1,1586	

Na Tab. 3 foram calculadas as chuvas máximas para a obtenção das intensidades de precipitações para os anos de recorrência utilizados no cálculo das cotas de inundação com uma duração de 30 minutos.

10

436,05

513

513,57

604,2

Tabela 3 - Chuvas máxima mensais de 1 dia para Pelotas RS 5

368,22

433,2

mm	270	380	450	530	570	600
duração T	2	5	10	20	25	50
			mm			
15 min	66,96	94,25	111,61	131,45	141,37	148,81
30 min	95,66	134,64	159,44	187,79	201,96	212,59
1 h	129,28	181,94	215,46	253,76	272,92	287,28
6 h	221,62	311,90	369,36	435,02	467,86	492,48
8 h	240,08	337,90	400,14	471,28	506,84	533,52

4 CONCLUSÃO

T (anos)

12 h

24 h

261,63

307,8

De acordo com o estudo pode-se perceber as baixas altitudes da região, favorecendo a uma área plana, associada a um predomínio de áreas urbanizadas, indicando a possibilidade de ocorrência do selamento superficial e áreas inundáveis.

Com os cálculos de intensidades de precipitações percebeu-se a ocorrência de valores expressivos, onde associados ao selamento superficial poderão propiciar áreas de inundação.

A medida mitigadora mais adequada para se evitar alguns dos problemas decorrentes das inundações, é evitar que pessoas residam próximo ao Canal São Gonçalo por ser este local com bastante risco para transbordamento em dias de chuvas muito elevadas. Para se evitar moradias nesses lugares, o ideal é criar parques recreativos ou até praças, assim evitaria que esses locais fossem habitados.

5 REFERÊNCIAS

CARDOSO, Luciana Silveira. "O conservar de uma significação" Investigando e diagnosticando os parâmetros ambientais da reserva técnica do museu municipal parque da Baronesa, Pelotas/RS. 2010. Monografia apresentada ao Curso de Bacharelado em Museologia da Universidade Federal de Pelotas. Universidade Federal de Pelotas, Pelotas, 2010.

CPRM, ANA e IGAM. Definição da Planície de inundação da cidade de Governador Valadares – Relatório Técnico Final - Belo Horizonte, 2004.

TUCCI, C. E. M. Gestão das Inundações Urbanas. Porto Alegre: UNESCO, 2005.