

A RELAÇÃO ENTRE ESPAÇOS MÉTRICOS E ESPAÇOS TOPOLÓGICOS

SILVA, Marcelo Santos¹; BECK, Vinicius Carvalho²;

¹ Licenciado em Matemática - UFPEL Bacharelando em Matemática - UFRGS Autor marcelo.math@yahoo.com.br

² Licenciado em Matemática - UFPEL Professor do Departamento de Matemática e Estatística - UFPEL Orientador <u>vonoco @gmail.com</u>

RESUMO

O objetivo deste trabalho é destacar a relação que existe entre os espaços métricos e os espaços topológicos. O principal resultado acerca desta relação é apresentado na seção 3 na forma de um teorema seguido de sua respectiva demonstração.

Palavras-chave: espaços métricos, espaços topológicos, métrica.

1. INTRODUÇÃO

A seguir, serão enunciados alguns conceitos relativos a espaços métricos e topológicos que permitem demonstrar a relação indicada neste trabalho. Ressalta-se que esta relação já é bastante conhecida e explorada na literatura. Porém, tal relação muitas vezes não é apresentada em detalhes, daí a importância do presente trabalho.

Definição 1 (topologia): Seja X um conjunto não-vazio e $\wp(X)$ o conjunto de todos os subconjuntos de X. Uma *topologia* sobre X é uma coleção $\tau \subset \wp(X)$ que cumpre as seguintes propriedades:

- 1) \emptyset , $X \in \tau$.
- 2) $A_i \in \tau \Longrightarrow \bigcup_i A_i \in \tau$.
- 3) $A_1, A_2, ..., A_n \in \tau \Longrightarrow \bigcap_{i=1}^n A_i \in \tau$.

Observação: Na propriedade 2), a união pode ser tanto finita, quanto infinita.

Definição 2 (espaço topológico): Dada uma topologia τ sobre um conjunto X, o par < X, $\tau >$ é denominado *espaço topológico*.

Definição 3 (conjuntos topologicamente abertos): Os elementos de uma topologia τ são chamados de *conjuntos topologicamente abertos de* τ , ou simplesmente de *abertos de* τ .

Definição 4 (métrica): Seja M um conjunto não-vazio e $d: M \times M \to \mathbb{R}$ uma função. Dizemos que d é uma *métrica sobre* M, se as seguintes condições são satisfeitas:

- 1) $d(x, y) \ge 0, \forall x, y \in M$.
- 2) $d(x, y) = 0 \Leftrightarrow x = y$, para $x, y \in M$.
- 3) $d(x, y) = d(y, x), \forall x, y \in M$.
- 4) $d(x, z) \le d(x, y) + d(y, z), \forall x, y \in M$.

Definição 5 (espaço métrico): Seja M um conjunto não-vazio. Dizemos que o par < M, d > é um *espaço métrico*, se é possível definir sobre M uma métrica d.

Definição 6 (conjuntos metricamente abertos): Um conjunto A é metricamente aberto, se $\forall a \in A, \exists \varepsilon > 0: [x \in M \text{ e } d(x, a) < \varepsilon] \Rightarrow x \in A).$

2. MATERIAL E MÉTODOS

A metodologia utilizada para a realização deste trabalho foi a pesquisa em livros e artigos dedicados à topologia e aos espaços métricos, com destaque para [2] LIMA e [3] LIMA, seguida de discussões e adequação de linguagem para construir uma demonstração do teorema apresentado na seção 3 deste artigo.

3. RESULTADOS E DISCUSSÃO

Teorema: Seja < M, d > um espaço métrico. Seja T_M a coleção dos subconjuntos metricamente abertos de M. Então $< M, T_M >$ é um espaço topológico.

Demonstração:

Seja < M, d > um espaço métrico, onde M é um conjunto não-vazio e d a métrica definida sobre M. Consideremos a coleção T_M dos subconjuntos metricamente abertos de M. Vamos caracterizar os conjuntos topologicamente abertos como sendo os metricamente abertos, chamando-os daqui para frente simplesmente de *abertos* e mostrar que o par $< M, T_M >$ é um espaço topológico.

 \emptyset é aberto por vacuidade. Pela definição de conjunto metricamente aberto, temos que $\forall a \in M, \exists \varepsilon = 1$ (por exemplo) tal que $[x \in M \text{ e } d(x, a) < \varepsilon] \Longrightarrow x \in M$. Daí segue que \emptyset e M são abertos. (1)

Consideremos um elemento a qualquer pertencente a uma união (finita ou infinita) de abertos. Como a pertence à união, então existe um conjunto A_i tal que $a \in A_i$ e $\forall b \in A_i, \exists \varepsilon_i > 0$: $\begin{bmatrix} x \in M \text{ e } d(x,b) < \varepsilon_i \end{bmatrix} \Rightarrow x \in A_i$. Em particular, para $b = a, \exists \varepsilon_{i_a} > 0$: $\begin{bmatrix} x \in M \text{ e } d(x,a) < \varepsilon_{i_a} \end{bmatrix} \Rightarrow x \in A_i$. Conseqüentemente, x pertence à união. Sendo U a união (finita ou infinita) de abertos, então isto significa que $\forall a \in U, \exists \varepsilon_{i_a} \text{ tal que } [x \in M \text{ e } d(x,a) < \varepsilon_{i_a}] \Rightarrow x \in U$. Assim, a união (finita ou infinita) de abertos de um espaço métrico M é um aberto de M. (2)

Consideremos agora um elemento a qualquer pertencente a uma intersecção finita I de abertos. Como $a \in I$, então $a \in A_1$, $a \in A_2$, ..., e $a \in A_n$ (assumindo que I seja uma intersecção de n subconjuntos). Isto significa que existem $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ tais que $[x \in M \text{ e } d(x, a) < \varepsilon_1] \Rightarrow x \in A_1$, $[x \in M \text{ e } d(x, a) < \varepsilon_2] \Rightarrow x \in A_2$, ..., e $[x \in M \text{ e } d(x, a) < \varepsilon_n] \Rightarrow x \in A_n$. Escolhendo $\varepsilon = \min{\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}}$, temos $[x \in M \text{ e } d(x, a) < \varepsilon] \Rightarrow x \in I$. Portanto, a intersecção finita de subconjuntos abertos de M é um aberto de M. (3)

Logo, de (1), (2) e (3) concluímos que o par $< M, T_M >$ constitui um espaço topológico.

4. CONCLUSÃO

O teorema acima mostra que é possível obter um espaço topológico a partir da coleção dos subconjuntos metricamente abertos de um espaço métrico, ou seja, dado um espaço métrico, podemos induzir uma topologia a partir dos conjuntos abertos.

REFERÊNCIAS

- [1] LIMA, Elon Lages. **Curso de análise vol.2**. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 2006.
- [2] LIMA, Elon Lages. **Elementos de Topologia Geral**. Livros Técnicos e Científicos, Rio de Janeiro, 1976.
- [3] LIMA, Elon Lages. **Espaços Métricos**. Instituto de Matemática Pura e Aplicada, CNPq, Rio de Janeiro, 1977.
- [4] SEMMES, Stephen. **A begginer's guide to analysis in metric spaces**. Rice University, Houston-Texas, arXiv: math/0408024v1 [math.CA], 2 Aug 2004.
- [5] SEMMES, Stephen. **A few aspects of analysis on metric spaces**. Rice University, Houston-Texas, arXiv: math/0211123v1 [math.CA], 6 Nov 2002.