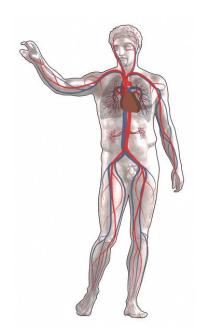
Universidade Federal de Pelotas
Centro de Desenvolvimento Tecnológico
Disciplina de Engenharia de células e tecidos
Prof: Fernanda Nedel e Flávio Demarco

Aplicações clínicas de células tronco hematopoiéticas

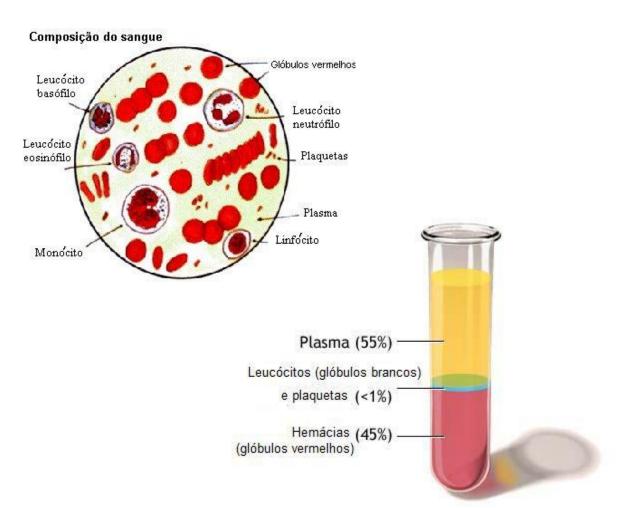
João Paulo Luiz Lucas Lorenzon Wallace Pereira


Sangue

Fluido corpóreo especializado

Composto por células e plasma sanguíneo

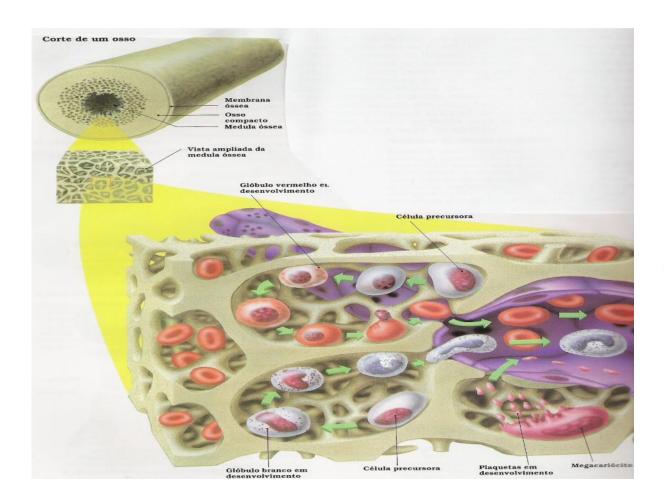
Sistema circulatório

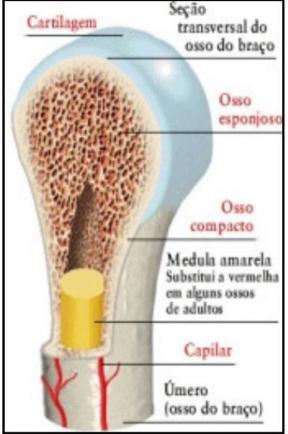


Componentes do sangue

- Células
- 1. Eritrócitos
- 2. Leucócitos
- 3. Trombócitos

Plasma




Médula Óssea

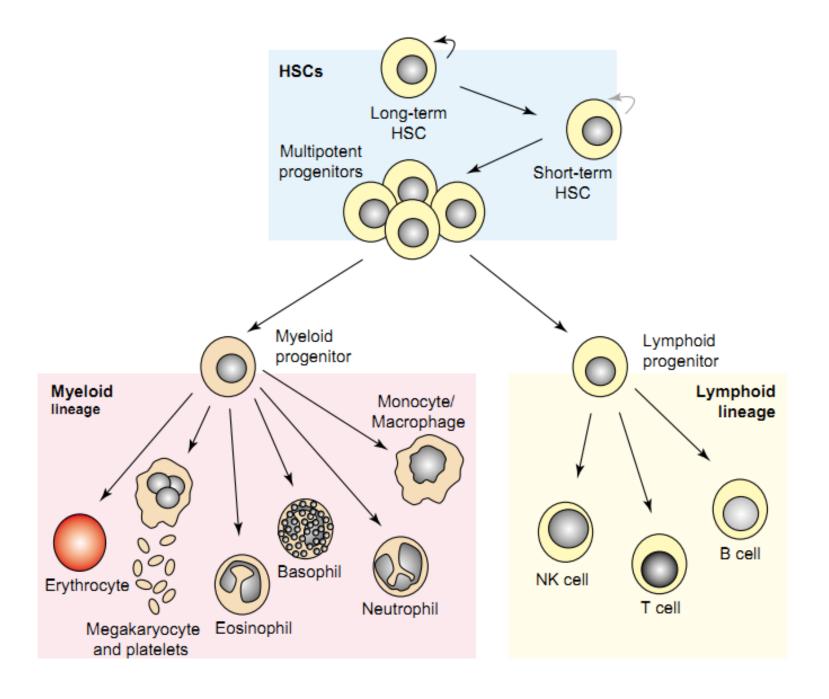
Orgão central formador de células do sangue

Localização

Medula óssea ativa e inativa

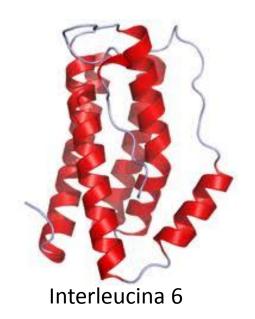
Células tronco hematopoiéticas

Características funcionais:

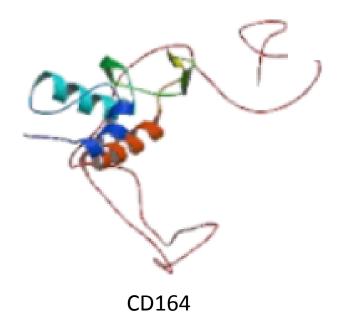

- Auto-renovação
- Multipotência
- Plasticidade
- Heterogeneidade
- Mobilidade

Tipos de HSC

long-term self-renewing HSCs (LT-HSCs),


short-term self-renewing HSCs (ST-HSCs),

multipotent progenitors (MPPs)


Mecanismos celulares e moleculares

- A dinâmica da hematopoiese é relativamente complexa;
- A comunicação entre as células é feita através de moléculas sinalizadoras, as citocinas.
- Proliferação, diferenciação e apoptose.

Mecanismos celulares e moleculares

- Estroma da medula óssea (adipócitos, células endoteliais, macrófagos and fibroblastos);
- Colágeno e proteoglicanos;
- Fixação de HSC a moléculas de adesão;
- CD164;

Mecanismos celulares e moleculares

- As HSC possuem marcadores de superfície celular específicos;
- CD34+ /CD38-

Markers of human hematopoietic stem cells (HSCs)

Name	Function	SWISS-PROT entry ^a
CD34 ^{- or -}	Sialomucin, possibly involved in cell-cell adhesion	P28906
Thy 1 ⁻ (CD90)	Possibly involved in cell-cell interaction	P04216
CD38-	ADP-ribosyl cyclase 1, synthesizes cyclic ADP-ribose; indicates differentiation to both erythroid and myeloid progenitors	P28907
c-Kit ⁻ (CD117)	Tyrosine kinase receptor for stem cell factor (SCF)	P10721
AC133 ⁻ (CD133)	Prominin-like protein, function unknown	O43490
lin ⁻ (lineage)	Generic designation for several markers of blood cell lineages	-

A plus (+) sign indicates presence of the marker in HSCs, whereas a minus (-) indicates its absence.

ahttp://www.expasy.ch/sprot/

- Meio de cultura: depende da objetivo da expansão;
- Meio contendo soro vantagens e desvantagens;
- Nutrição + proteção;
- Controle;

- Células acessórias: produzem citocinas, importantes para o cultivo;
- Cultivos com estroma pré-estabelecido mantém as células no seu fenótipo primitivo;

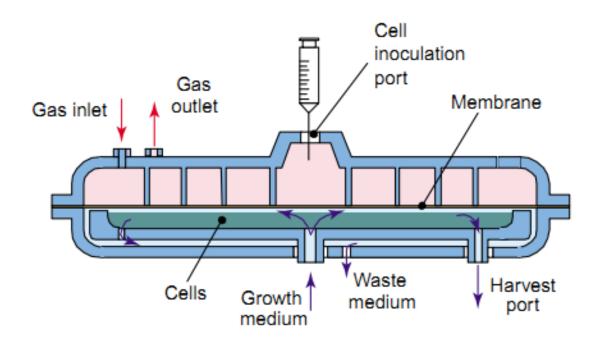
Cytokines used in human hematopoietic stem cell (HSC) culture ex vivo

Cytokine (abbreviation)	Function	
Fms-like tyrosine kinase-3 ligand (Flt-3L, FL)	Potentiates the effects of other cytokines; promotes survival of HSCs	
Granulocyte CSF (G-CSF)	Mobilization of HSCs to peripheral blood	
Interleukin 3 (IL-3)	Together with IL-6, promotes proliferation of HSCs	
Interleukin 6 (IL-6)	Together with IL-3, promotes proliferation of HSCs	
Interleukin 10 (IL-10)	Helps proliferation of HSCs	
Interleukin 11 (IL-11)	Shortens the G ₀ period of the cell cycle of HSCs	
Jagged-1	Regulates HSC self-renewal	
Platelet-derived growth factor (PDGF)	Mitogen for connective tissue cells	
Stem cell factor (SCF)	Growth factor for HSC progenitor cells	
Thrombopoietin (TPO)	Stimulator of megakaryocytopoiesis	

CSF, colony-stimulating factor; Fms, fibromyalgia syndrome gene.

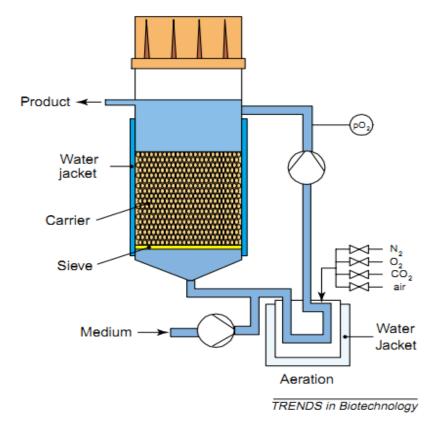
- Produção de fatores inibitórios da proliferação das células tronco;
- Parâmetros fisioquímicos, como pH, glicose e O2 interferem na produção endógena de citocinas;
- Estratégias para manter o balanço entre moduladores inibitórios e indutores da proliferação;

 Tensões de oxigênio de 1 a 10 % aumentam o tamanho e a quantidade de células;


 Baixas concentrações de óxido nítrico, peróxido de hidrogênio e radicais de oxigênio

- A acidificação do meio pode causar inibição do crescimento.
- Pequenas variações no pH podem alterar a sobrevivência e a diferenciação das HSC.
- Granulócito e macrófago → pH 7.2 7.4
- Eritrócito pH 7.6

- T-flask cultura estática;
- Limitações: gradientes de concentração, manuseio, baixa reprodutibilidade, difícil controle, produtividade limitada pela superfície da garrafa;


• Câmara de perfusão

- Stirred reactors;
- Não requer ligação à superfície;
- Agitação pode alterar
 Receptores de citocina.

- Packed bed reactors
- Primeiramente, cultivo de células do estroma;

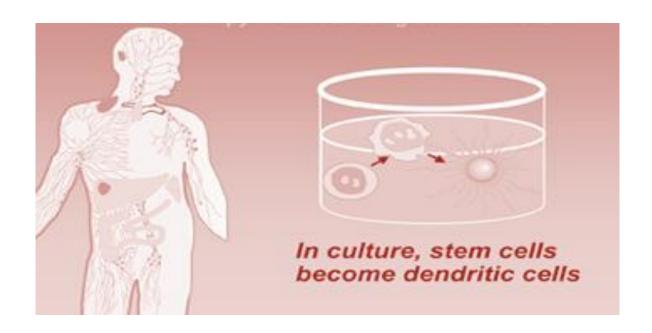
Obtenção das HSC

- Múltiplas punções com agulhas
- -bacia, esterno, costela e vértebras

Mobilização das células

- 10 a 15 ml/kg
- Através de leucaférese

Separação de células sanguíneas

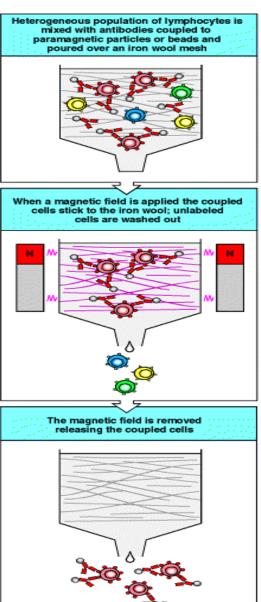

- Centrifugação
- Panning
- Separação imunomagnética
- Cromatografia de afinidade
- Citometria de Fluxo
- FACS (fluorescence-activated cell sorter)

Separação de células sanguíneas Centrifugação em gradiente

- Envolve a separação de partículas com base na sua massa e forma numa solução de densidade e/ou concentração decrescente
- A amostra é colocada no cimo do tubo e durante a centrifugação migra de acordo com a sua velocidade e sedimentação, ex: gradiente de <u>Ficoll-Hypaque</u>
 - Eritrócitos+ PMNs mais densos
 - Células mononucleares (linfócitos/ monócitos)-menos densos: recuperados à superfície

Separação de células sanguíneas Panning

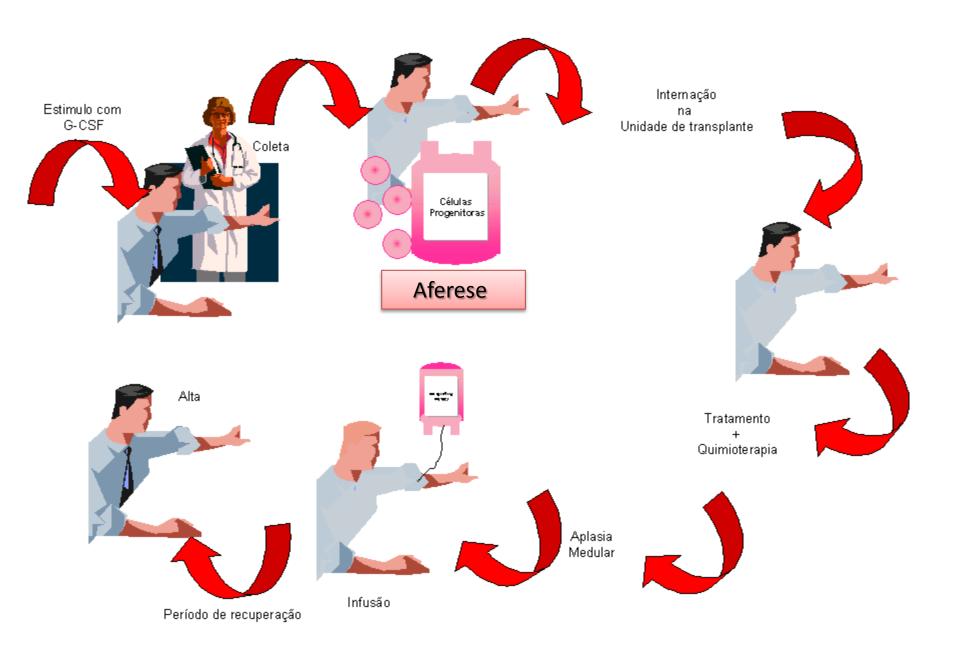
Aderência celular a uma superfície sólida


Separação de linfócitos por Panning Análises Clínicas (Linfócitos)

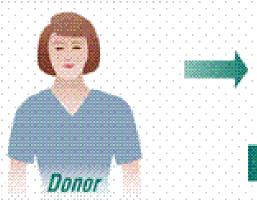
- Técnica usada no isolamento de subpopulações de linfócitos, em que estes podem aderir á superfície se esta estiver coberta com os anticorpos apropriados
- Método eficaz na separação Th de Tc usando anticorpos CD4+ e CD8+
- Eficaz também na separação de linfócitos T e B usando anti-Igs

Separação de células sanguíneas Separação imunomagnética

Transplante de HSC


 São definidos de acordo com o doador e a origem das células transplantadas

Autólogo: Retiradas do próprio paciente


Alogênico: Doador compatível, podendo ser familiar ou não-familiar

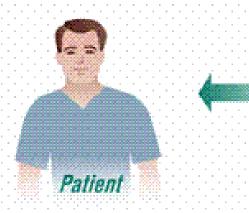
Singênico: Gêmeos univitelinos

Transplante Autólogo de Células Progenitoras de Sangue Periférico

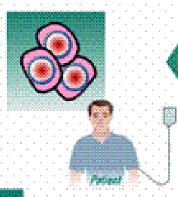
The Allogeneic Transplant Process

Irmão: 25% Familiar: < 5%

Não aparentado: ?


1 Collection

Stem cells are collected from the patients bone marrow or blood.


2 Processing

Bone marrow or periferal blood is taken to the processing laboratory where the stem cells are concentrated and prepared for the freezing process

5 Infusion

Thawed stem cells are infused into the patient.

4 Chemotherapy

High dose chemotherapy and/or radiation therapy is given to the patient.

3 Cryopreservation

Bone marrow or blood is preserved by freezing (cryopreservation) to keep stem cells alive until they are infused into the patient's bloodstream.

Origem das HSC para transplante

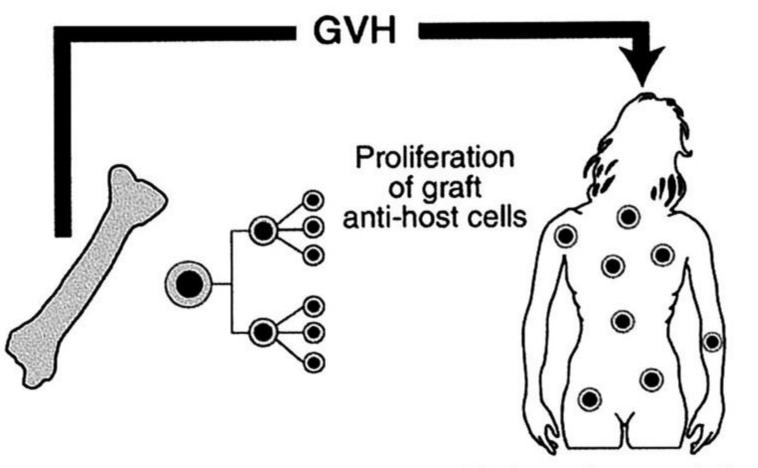
- Medula óssea
 - Punção
 - Metodologia clássica
- Sangue periférico
 - Aferese
 - Metodologia mais utilizada atualmente em pacientes> 20 anos
- Cordão umbilical
 - Em média 100 mL, contendo HCS
 - Mais utilizada em crianças

Métodos para aumentar o sucesso do transplante

Expansão quantitativa ex vivo

- Culvito in vitro
- Biorreatores

Imunossupressão


- Quimioterapia e radioterapia
- Ciclosporina A e FK-506: Inibe síntese de IL-2 (ligação Agreceptor)
- Rapamicina: Interfere transdução de sinal IL-2xIL-2R
 - Agentes bloqueadores de proliferação de células T

Seleção de doador

- Regiões com HLA D compatíveis
- ABO compatível
- Baixa compatibilidade: Remoção de linfócitos T do doador

Rejeição das HCS transplantadas

- Hospedeiro contra o enxerto:
 - Receptor imunocompetente
 - Resposta imune contra as células enxertadas.
- Enxerto contra o hospedeiro:
 - Receptor imunocomprometido
 - Progenitor linfóide competente
 - Células T imunoreativas atacam tecidos do receptor

Defenseless recipient

Indicações de transplante de HSC autólogo

- Benefícios já provados em grandes estudos:
 - Linfoma Não-Hodgkin Recaídos
 - Leucemia Mielóide Aguda
 - Mieloma Múltiplo
- Benefício provável
 - Leucemia Mielóide Aguda
 - Doença de Hodgkin Recaída
 - Tumores Germinativos Reciditivados
- Benefícios possíveis (ainda não comprovados)
 - Câncer de mama
 - Leucemia Linfóide Crônica
 - Câncer de pulmão
 - Outros tumores
 - Doenças autoimunes severas (ex: artrite reumatóide)

Indicações de transplante de HSC alogênico

- Como única chance de cura:
 - Aplasia de medula
 - Hemoglobinopatias (Talassemias e anemia falciforme)
 - Imunodeficiências primárias
 - Leucemia Mielóide Crônica
- Como tratamento melhor que a quimioterapia:
 - Leucemia Mielóide Aguda
 - Leucemia Linfóide Aguda
 - Mielodisplasias

Potenciais aplicações clínicas

- Restauração de células T e B
 - Células T esgotadas

- Cordão umbilical
 - baixa capacidade de indução de reatividade
 - limitado número de células

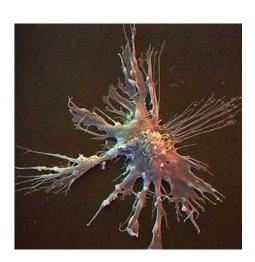
Sangue periférico

Expansão ex vivo para terapia gênica

Longo tempo de vida

Geralmente modificados através retrovir

Gene therapy using an adenovirus vector


Necessitam de indução de citocinas

Imunoterapia baseado em células dendríticas

 Poderosas células apresentadoras de antígenos

Estimulam células T citotóxicas e T helpers

Difícil isolamento

Produção de células sanguíneas maduras

 Produção em larga escala de produtos sanguíneos maduros

• Elimina problemas como:

Escassez de tipos sanguíneos específicos

Aumento de produtividade e melhora no controle das linhagens

Referência

- Cabrita et al. Hematopoietic stem cells: from the bone to the bioreactor. TRENDS in Biotechnology. 2003
- Sorretino et al. Clinical strategies for expansion of haematopoietic stem cells. Nature. 2004
- McAdams et al. Hematopoietic cell culture therapies (part II): clinical aspects and applications. TRENDS in Biotechnology. 1996
- Kondo et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annual Reviews of Immunology. 2003