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Abstract
Mass spectrometry (MS) is the most comprehensive and versatile tool in
large-scale proteomics. In this review, we dissect the overall framework of
the MS experiment into its key components. We discuss the fundamentals of
proteomic analyses as well as recent developments in the areas of separation
methods, instrumentation, and overall experimental design. We highlight
both the inherent strengths and limitations of protein MS and offer a rough
guide for selecting an experimental design based on the goals of the analy-
sis. We emphasize the versatility of the Orbitrap, a novel mass analyzer that
features high resolution (up to 150,000), high mass accuracy (2–5 ppm), a
mass-to-charge range of 6000, and a dynamic range greater than 103. High
mass accuracy of the Orbitrap expands the arsenal of the data acquisition and
analysis approaches compared with a low-resolution instrument. We discuss
various chromatographic techniques, including multidimensional separation
and ultra-performance liquid chromatography. Multidimensional protein
identification technology (MudPIT) involves a continuum sample prepa-
ration, orthogonal separations, and MS and software solutions. We discuss
several aspects of MudPIT applications to quantitative phosphoproteomics.
MudPIT application to large-scale analysis of phosphoproteins includes (a)
a fractionation procedure for motif-specific enrichment of phosphopeptides,
(b) development of informatics tools for interrogation and validation of shot-
gun phosphopeptide data, and (c) in-depth data analysis for simultaneous
determination of protein expression and phosphorylation levels, analog to
western blot measurements. We illustrate MudPIT application to quantita-
tive phosphoproteomics of the beta adrenergic pathway. We discuss several
biological discoveries made via mass spectrometry pipelines with a focus on
cell signaling proteomics.
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1. INTRODUCTION

Whole-genome sequencing efforts of the past century have produced many fully sequenced
genomes, punctuated by the completion of the Human Genome Project (1, 2). Genomics provides
sequence information of the full complement of genes in an organism, and to date, there are more
than 180 fully sequenced genomes. Transcriptomics uses DNA microarray (3–6) technologies to
study gene expression by measuring transcriptional regulation of genes via their messenger levels.
In many cases, however, it is proteins that act as the cellular building blocks that directly assert
the potential function of genes via enzymatic catalysis, molecular signaling, and physical interac-
tions. This third downstream “omics” of science is known as proteomics (7), and it studies the
protein complement of cells, including identification, modification, quantification, and localiza-
tion. Mass spectrometry (MS) uses mass analysis for protein characterization, and it is the most
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MS: mass
spectrometry

ESI: electrospray
ionization

comprehensive and versatile tool in large-scale proteomics. Whereas DNA microarray technology
is based on a highly sensitive and specific hybridization reaction between nucleic acid fragments,
inherent limitations of biological MS (8) require several different approaches to protein analy-
sis. Implementation of these strategies (e.g., sample preparation, front-end separation, ionization,
data acquisition, and data analysis) differs depending on the sample complexity and the goals of
the analysis (9).

2. IONIZATION TECHNIQUES

Protein MS has enjoyed rapid growth in the past two decades owing to important developments in
experimental methods, instrumentation, and data analysis approaches. One of the most important
developments in instrumentation is the introduction of soft ionization methods that allow for
proteins and peptides to be analyzed by MS. Proteins and peptides are polar, nonvolatile, and
thermally unstable species that require an ionization technique that transfers an analyte into the
gas phase without extensive degradation. Two such techniques paved the way for the modern
bench-top MS proteomics, matrix-assisted laser desorption ionization (MALDI), (10–13) and
electrospray ionization (ESI) (14).

2.1. MALDI

The MALDI matrix absorbs laser energy and transfers it to the acidified analyte, whereas the
rapid laser heating causes desorption of matrix and [M+H]+ ions of analyte into the gas phase.
MALDI ionization requires several hundred laser shots to achieve an acceptable signal-to-noise
ratio for ion detection (15). MALDI-generated ions are predominantly singly charged. This makes
MALDI applicable to top-down analysis of high-molecular-weight proteins with pulsed analysis
instruments. The drawbacks are low shot-to-shot reproducibility and strong dependence on sam-
ple preparation methods (16, 17). Matrix-free MALDI techniques, such as SALDI (18) and DIOS
(19), substitute matrix lattice for porous graphite and silicon, respectively, have higher tolerance
toward detergents and salts, and do not suffer from matrix effects. An important development in
MALDI ionization is atmospheric pressure MALDI (AP-MALDI) (20). This interface allows easy
interchange between MALDI and ESI sources. The concept of MALDI has led to techniques
such as surface-enhanced laser desorption ionization (SELDI) (21) that introduce surface affinity
toward various protein and peptide molecules.

2.2. ESI

Unlike MALDI, the ESI source produces ions from solution. Electrospray ionization is driven by
high voltage (2–6 kV) applied between the emitter at the end of the separation pipeline and the
inlet of the mass spectrometer. Physicochemical processes of ESI involve creation of electrically
charged spray, Taylor cone (22), followed by formation and desolvation of analyte-solvent droplets.
Formation and desolvation of the droplets is aided by a heated capillary, and in some cases, by sheath
gas flow at the mass spectrometer inlet. There are several physical models of ESI ion formation
(23–25), but some of the practical features are the multiply charged species and sensitivity to
analyte concentration and flow rate. An important development in ESI technique includes micro-
and nano-ESI (26, 27), in which the flow rates are lowered to a nanoliter-per-minute regime
to improve the method’s sensitivity. Nano-ESI is compatible with capillary reverse phase (RP)
columns (27) that offer higher sensitivity than the 2.1 and 1.0 mm analytical columns (28, 29). An
ESI source is usually coupled to the continuous analysis instruments.
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LTQ: Thermo
Scientific version of
linear ion trap

3. INSTRUMENTATION

Mass spectrometers usually consist of the following parts: the ion source and optics, the mass
analyzer, and the data processing electronics. Mass analyzers are an integral part of each instru-
ment because they can store ions and separate them based on the mass-to-charge ratios. Ion trap
(IT), Orbitrap, and ion cyclotron resonance (ICR) mass analyzers separate ions based on their m/z
resonance frequency, quadrupoles (Q) use m/z stability, and time-of-flight (TOF) analyzers use
flight time. Each mass analyzer has unique properties, such as mass range, analysis speed, resolu-
tion, sensitivity, ion transmission, and dynamic range. Hybrid mass spectrometers have been built
that combined more than one mass analyzer to answer specific needs during analysis. An in-depth
analysis of different types of mass analyzers is out of the scope of this review because there are
already many excellent texts (30, 31) and reviews of the instrumentation (32–37).

3.1. Mass Analysers

There are two broad categories of mass analyzers: the scanning and ion-beam mass spectrometers,
such as TOF and Q; and the trapping mass spectrometers, such as IT, Orbitrap, and FT-ICR.
The scanning mass analyzers like TOF are usually interfaced with MALDI to perform pulsed
analysis, whereas the ion-beam and trapping instruments are frequently coupled to a continuous
ESI source. The following instrument configurations are the most widely used solutions in the
field of proteomics: ion traps [QIT: three-dimensional (3D) ion trap, LIT: linear ion trap] (38),
triple quadrupoles (TQ), LTQ-Orbitrap (39–42) hybrid instrument (Thermo Scientific), LTQ-
FTICR (43–46) (Thermo Scientific), and the TQ-FTICR hybrid instruments Q-TOF (47, 48)
and IT-TOF (Shimadzu) (49–52). Table 1 highlights comparative features and applications of the
instruments most commonly used in proteomics.

Table 1 Performance comparisons of the mass spectrometry instruments

Instrument Applications Resolution
Mass

accuracy Sensitivity
Dynamic

range Scan rate
LIT (LTQ) Bottom-up protein identification in

high-complexity, high-throughput
analysis, LC-MSn capabilities

2000 100 ppm Femtomole 1e4 Fast

TQ (TSQ) Bottom-up peptide and protein
quantification; medium complexity
samples, peptide and protein
quantification (SRM, MRM, precursor,
product, neutral fragment monitoring)

2000 100 ppm Attomole 1e6 Moderate

LTQ-
Orbitrap

Protein identification, quantification,
PTM identification

100,000 2 ppm Femtomole 1e4 Moderate

LTQ-FTICR,
Q-FTICR

Protein identification, quantification,
PTM identification, top-down protein
identification

500,000 <2 ppm Femtomole 1e4 Slow, slow

Q-TOF,
IT-TOF

Bottom-up, top-down protein
identification, PTM identification

10,000 2–5 ppm Attomole 1e6 Moderate, fast

Q-LIT Bottom-up peptide and protein
quantification; medium complexity
samples, peptide and protein
quantification (SRM, MRM, precursor,
product, neutral fragment monitoring)

2,000 100 ppm Attomole 1e6 Moderate, fast
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LC: liquid
chromatography

3.2. Ion Trap

Ion trap instruments (33, 53) are the high-throughput workhorses in proteomics. These versatile
instruments feature fast scan rates, MSn scans, high-duty cycle, high sensitivity, and reasonable
resolution [2000 full width at the half height (FWHH)] and mass accuracy (100 ppm). The LTQ
ion trap (54) from Thermo Scientific combines a tenfold-higher ion storage capacity than 3D traps
and high resolution at a fast scanning rate (5555 Da s−1). In addition, the LTQ radial ion ejection
offers higher sensitivity than other two-dimensional (2D) ion-trap instruments (54). Stand-alone
ion trap instruments are best suited for the bottom-up liquid chromatography (LC)/MS protein
identification studies from complex samples and whole cell lysates for which the fast scanning
rates and high sensitivity of LITs offer high proteome coverage. LIT is used as the front end of
hybrid instruments, such as LTQ-Orbitrap and LTQ-FTICR, where it is used for trapping, ion
selection, and ion reactions.

3.3. LTQ-Orbitrap

Of several hybrid instruments, the LTQ-Orbitrap deserves a special mention because it uses a
novel mass analyzer. Orbitrap uses orbital trapping of ions in its static electrostatic fields (39–
42) in which the ions orbit around a central electrode and oscillate in axial direction. Figure 1

a Ion source Linear ion trap C-trap

Differential pumping

Orbitrap

Differential pumpingb

Ion trajectory

r

z

Figure 1
Schematic of the linear ion trap-orbitrap hybrid instrument by Thermo Scientific (LTQ-Orbitrap).
(a) Overall diagram of the LTQ-Orbitrap (reprinted with permission from Reference 39). (b) Cross section
of the Orbitrap analyzer (reprinted with permission from Reference 40).
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illustrates an Orbitrap mass analyzer. Both Orbitrap and ICR instruments use a fast Fourier
transform (FFT) algorithm (55) to convert time-domain signal into mass-to-charge spectrum.
The Orbitrap mass analyzer features high resolution (up to 150,000), high mass accuracy (2–
5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 103 (40, 42). When
coupled to an LTQ ion trap, the hybrid instrument has the advantages of both high resolution
and mass accuracy of the Orbitrap and the speed and the sensitivity of the LTQ. Furthermore,
one can operate LTQ-Orbitrap in a parallel fashion: the Orbitrap acquires MS full scans while the
LTQ carries out fragmentation reactions. There are several papers that review and benchmark the
performance of the Orbitrap for bottom-up (32, 33, 35, 56, 57) and top-down (58, 59) proteomic
applications. Some of the recent applications of the LTQ-Orbitrap highlight the benefits of high
mass accuracy: It improves quantification of low-abundance peptides with S/N ratio of 10 (60),
it aids in profiling very complex biological samples such as human plasma (61), and it furthers
identification of proteins from the limited sequence proteomes (62). Orbitrap was recently used
in a large-scale proteomic analysis of Mycobacterium tuberculosis in which the protein identification
results were used to improve gene annotations in Sanger and The Institute for Genomic Research
(TIGR) databases. The high mass accuracy of the Orbitrap allows for alternate data acquisition
and data analysis approaches. A massive virtual Multiple Reaction Monitoring (MRM) approach
(63) was carried out using a high-complexity sample. As for the data analysis, high mass accuracy
allows integration of database search, de novo search, Peptide Mass Fingerprint (PMF) search,
and the library lookup into a proteomic pipeline to achieve higher coverage and accuracy (64,
65). In conclusion, the LTQ-Orbitrap offers mass accuracy comparable to the LTQ-FTICR at
a lower price tag and a lower maintenance cost for many proteomic applications. Although the
LTQ-Orbitrap is used in top-down experiments (58, 66), one of the FTICR benefits is broader
mass-to-charge range, which is best suited for top-down protein analysis and has the ability to
carry out gas-phase reactions in the ICR cell (45, 67).

4. SEPARATION TECHNOLOGIES

Protein MS is tightly linked and highly dependent on separation technologies that simplify in-
credibly complex biological samples prior to mass analysis. Because proteins are identified by the
mass-to-charge ratios of their peptides and fragments, sufficient separation is required for un-
ambiguous identifications. Front-end separation is also required to detect low-abundance species
that would otherwise be overshadowed by a higher abundance signal. Therefore, both accuracy
and sensitivity of a mass spectrometric experiment rely on efficient separation. There is a very
strong conceptual link between chemical separation and MS in which the latter is viewed as the
mass-resolution dimension of separation of molecules (33). Selection of appropriate separation
methods is often the first step in designing the proteomic application. Two major approaches to
separation widely used in proteomics are gel based and gel free. Two-dimensional polyacrylamide
gel electrophoresis (2D PAGE) is the historic centerpiece of the gel-based separation methods
(68–71). There are many excellent reviews that cover 2D PAGE and gel-based approaches to
proteomics (72–75).

4.1. HPLC

Gel-based methods have been traditionally used with pulsed ionization MALDI instruments in
which the protein band can be excised, digested, and off-line sampled with MALDI source (76). In
contrast, the high-pressure liquid chromatography (HPLC) is usually directly coupled to instru-
ments with an ESI source. Continuous separation via HPLC is conceptually and technologically
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UPLC: ultra
performance liquid
chromatography

compatible with a continuous ionization source such as ESI, and both are usually interfaced with
scanning or trapping mass analyzers (LTQ, QqLIT, QqTOF, LTQ-Orbitrap, LTQ-FTICR).
HPLC has become a standard front end for many biological applications and gave rise to sev-
eral LC/MS setups (33, 37, 77). The following types of HPLC chromatographic materials are
most commonly used in MS-based proteomics: ion exchange (IEX), reverse phase, hydrophilic-
interaction chromatography (HILIC), affinity, and hybrid materials. However, the high-pressure
reverse phase chromatography is as essential to LC/MS as 2D PAGE is to gel-based proteomics
(27, 78).

4.2. RPLC

Reverse phase resins (RPLC or RP) separate compounds based on their hydrophobicity, and a
significant advantage of RPLC is that the buffers used are compatible with ESI (79). Given high
resolution, efficiency, reproducibility, and mobile phase compatibility with ESI, the analytical
RPLC is used as the single phase and as the last dimension of multidimensional separation (80–
82) before mass analysis. Significant effort goes into increasing peak capacity (83), sensitivity
(84, 85), reproducibility, and analysis speed of reverse phase chromatography (86, 87). It has
been shown that packing long, narrow capillary RP columns greatly improves loading capacity,
sensitivity, and dynamic range of the RPLC (29, 79, 88). Shen et al. (88) have introduced long,
small-particle-size (1.4 μm) RPLC columns with high peak capacity (1500 and higher, compared
with an average of 400) operated in an ultrahigh pressure regime (20 kpsi). Using only RPLC,
they have identified more than 2000 proteins that vary over six orders of magnitude from human
plasma in a single experiment. The small particle size of RP material (2 μm and smaller) allows
improved peak capacity, resolution, and reduced analysis time (89, 90) when using an ultrahigh
pressure regime. The small particle size and the elevated temperature (65◦C) ultra performance
liquid chromatography (UPLC) approach was shown to improve separation of intact proteins
(91). UPLC was also shown to double the number of identified proteins compared with HPLC
(92). A recent comparison of regular HPLC with sub-2-μm-particle UPLC using human plasma
samples highlighted improved resolution, sensitivity, and analysis time reduction (93). Therefore,
increasing the column length while decreasing the particle size and using UPLC leads to improved
peak capacity, resolution, sensitivity, and analysis time.

4.3. Multidimensional Separation

Another common way to address limited peak capacity (94, 95) is to integrate RPLC as part of
a multidimensional separation approach. High-complexity large-scale proteomic samples contain
thousands of proteins that can range upward of five orders of magnitude in their abundance (96).
The complexity of the shotgun proteomic samples is even higher where each proteolytically di-
gested protein yields multiple peptide products (97). Multidimensional separation is used to address
this high sample complexity. By definition, the multidimensional separation approach combines
several separation techniques coupled to improve the resolving power. An important consideration
for multidimensional separation is the orthogonality of the individual separation methods (98) in
which each dimension uses different (orthogonal) molecular properties of molecules as a basis for
separation. Although there are recent review papers that cover historical and theoretical aspects
of multidimensional separation (77, 99), we mention some of the milestones in addition to the
current trends. One of the first 2D setups featured cation exchange chromatography coupled to
a reverse phase column in line with a mass spectrometer (82) used for separation of Escherichia
coli proteins. The overall peak capacity of the method was in excess of 2500, with femtomolar

www.annualreviews.org • Proteomics by Mass Spectrometry 55

A
nn

u.
 R

ev
. B

io
m

ed
. E

ng
. 2

00
9.

11
:4

9-
79

. D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 U
ni

ve
rs

id
ad

e 
Fe

de
ra

l d
o 

C
ea

ra
 o

n 
03

/0
1/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV382-BE11-03 ARI 5 June 2009 15:40

MudPIT:
Multidimensional
Protein Identification
Technology

IMAC: immobilized
metal affinity
chromatography

sensitivity due to the high capacity of strong cation-exchange (SCX) resin and the high resolution
of SCX and RP. The 2D SCX chromatography followed by RPLC has become a popular method
in shotgun proteomics known as multidimensional protein identification technology (MudPIT)
(80, 97, 100). High complexity sample is loaded onto an SCX column and eluted in a series of
steps with increasing salt concentration. Each fraction is loaded onto an RP column either off-line
or directly eluted into an ESI source with nonpolar buffer. ESI is incompatible with high deter-
gent and salt concentrations, and there have been several technical improvements to MudPIT to
circumvent this drawback (101–103). MudPIT setup with long RP UHPLC columns has yielded
higher sensitivity (low Picogram amounts) (104) and twice the protein coverage (92) compared
with the conventional MudPIT setup. Figure 2 illustrates advantages of UHPLC in MudPIT.
Other materials used as first dimension (1D) are size exclusion (97), anion-exchange, (105) and a
mixed-bed approach (106). Recent work compares several 1D methods (107) within the 2D setup
to separate proteins of various physicochemical properties.

4.4. Affinity Chromatography

Another important category of chromatographic techniques is affinity chromatography. Affinity
materials are often used to enrich posttranslationally modified (PTM) proteins and peptides to
the levels measurable by mass spectrometers. Posttranslationally modified proteins often play a
regulatory role in the cell and are often present in very small concentrations. In addition, dynamic
nature and low stoichiometry of PTMs such as phosphorylation require enrichment prior to
analysis. Affinity chromatography is usually a part of the multidimensional separation scheme
directly or off-line coupled to the RP column.

4.5. Phosphoproteomics

Phosphoproteomics is geared toward the identification and quantification of phosphorylated pro-
teins and the identification of phosphorylation sites (108, 109). Several selective enrichment tech-
niques take advantage of the chelating properties of some metals toward the phosphate group of
phosphorylated peptides. Immobilized metal affinity chromatography (IMAC) (110) has become a
popular method whereby immobilized Fe3+ ions (111) are used to selectively bind phosphorylated
peptides. The IMAC selectivity and specificity can be altered with different buffer conditions, such
as pH, salt concentration (112), buffer composition, and the presence of detergents (113). Also,
other metals such as Zr4+ (114) and Ga3+ (115) are used with IMAC, yielding different specificities
and improved coverage. Other metal oxide affinity resins are TiO2 (116), Fe3O4 (117), and ZrO2

(118). Some nonaffinity techniques such as anion-exchange chromatography (119), mixed-bed
chromatography (106), and HILIC (120) offer additional strategies for enrichment. For more
detailed discussion of phosphoproteomic enrichment methods see Section 6.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2
High-resolution separation demonstrated by the UPLC-MudPIT system. (a) A base peak chromatogram of tryptic peptides from yeast
lysate separated by a 60-cm triphasic column with a 350-min gradient. (b) A mass chromatogram of six typical peptides used to estimate
a peak capacity. (c) A gradient profile monitored by UV. (d ) Representative fragmentation scan (MS/MS) spectra and their assignments.
A triphasic column composed of 5-cm C18 trap (5 μm)/5-cm SCX/60-cm C18 analytical (3 μm) was operated at 125 μL min−1

constant flow (system pressure, ∼15 kpsi; column flow rate, ∼0.16 μL min−1). A 10-μg of yeast Lys-C + tryptic digest was injected in
the system. Peptides were eluted by a two-step UHP-MudPIT (i.e., the chromatogram shown in a is of the second step eluted with
500 mM ammonium acetate). In b, six mid-intensity peaks distributed nearly evenly across the chromatogram were picked. wb, a peak
width at the base line, given in minutes. The estimated peak capacity was ∼400. Reprinted with permission from Reference 92.
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4.6. Glycoproteomics

Glycoproteomics is another large area in which affinity chromatography is applicable. Glycosy-
lation plays a significant role in the immune response in which many glycosylated proteins are
displayed on the cell surface and serve as extracellular receptors. N-linked glycosylated peptides are
selectively bound to the solid support (121) and are subsequently enzymatically released. Another
affinity enrichment method of N-linked glycopeptides involves immobilized lectin binding site
chemistry (122). Enzymatic release from a solid support combined with H18O enzymatic labeling
led to the development of IGOT, the isotope-coded glycosylation site–specific tagging (123, 124).
Immobilized lectin chemistry is also used for O-linked glycoprotein analysis in a technique called
serial lectin affinity chromatography (SLAC) (125).

5. PROTEOMIC APPROACHES

Given the many technical options available for proteome analysis, several general strategies of
protein identification have emerged. Gel-based or chromatographic separation is used to reduce
sample complexity prior to mass analysis. Mass spectrometric data acquisition is usually imple-
mented in a data-dependent manner in which information from a current mass spectrometric scan
determines the parameters of subsequent scans. Another feature of proteomic analysis is tandem
MS, whereby mass analysis is carried out on intact molecular ions (full-scan MS) or on fragmented
precursor ions (MSn scans). In most cases, full scans produce masses of the proteins or peptides,
and fragmentation scans yield the primary sequence information.

A proteomic analysis begins with the sample preparation in which proteins are either enzymat-
ically digested into peptides (bottom-up analysis) (126–128) or analyzed intact (top-down analysis)
(45, 129–131). Table 2 outlines some of these approaches.

5.1. The Bottom-Up Approach

The bottom-up approach is the most popular method when tackling high-complexity samples
for large-scale analyses. The term shotgun proteomics (33, 80, 97) is the protein equivalent to
shotgun genomic sequencing in which the DNA is sheared and sequenced in smaller overlap-
ping contigs. Bottom-up proteomics is an approach in which proteins are proteolytically digested
into peptides prior to mass analysis, and the ensuing peptide masses and sequences are used to
identify corresponding proteins. Most bottom-up applications require tandem data acquisition in
which peptides are subjected to collision-activated dissociation (CAD or CID). The most widely
used method for bottom-up tandem MS data identification is the database search (132, 133) in
which experimental MSn data are compared with the predicted, in silico–generated fragmentation
patterns of the peptides under investigation. Since the original publication of SEQUEST (132)
in 1994, many methods have been developed that address some of the computational challenges
associated with bottom-up proteomics. Some of these developments include using probabilistic
scoring schemes (133–138), incorporating additional search criteria (139, 140), and storing previ-
ously identified spectra to bootstrap the database search (141). Substantial efforts are being made
to establish public repositories of proteomic data aimed at promoting data format standardization
and increasing data availability for independent analyses (142–147). The bottom-up approach is
also well suited for chemical modification of peptides, with the aim of peptide and protein quan-
tification. Techniques such as ICAT (148), O18 labeling (149), and Hamon tandem mass tags (150)
work best with flexible and accessible peptides. Some of the advantages of the bottom-up approach
include better front-end separation of peptides compared with proteins and higher sensitivity than
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Table 2 Approaches in mass spectrometry proteomicsa

Prerequisite Advantages Drawbacks Applications Front end Analysis
Top
down

High mass
accuracy
instruments

High sequence
coverage

Precursor ion
charge state
limitations

Single-protein
characterization

Ion-exchange
chromatography

EST

LTQ-Orbitrap PTM and
protein-protein
complexes
information

Separation
limitations

Proteome
analysis

RP chromatography De novo

LIT-ICR Multiple PTM
identification

Low sensitivity Alternative
splicing

Two-dimensional
separation

Large sample
amount

Soft fragmentation
with ECD, ETD

Protein
identification issues
related to the
charge-state
umbiguity

Multiple PTM
analysis

ESI ionization

Better
quantification
compared with
bottom up

Sample infusion

Bottom
up

Wide variety of
instruments

Large-scale data
acquisition

Narrow mass range Protein
identification
via peptide
analysis

Gel based PMF

Q-TOF, LIT,
LTQ-Orbitrap,
etc.

High-complexity
samples

Front-end
separation required

Protein
quantification,
PTM analysis

Gel free Database
search

Sample digest
prior to analysis

High sensitivity Oversampling of
high-abundance
peptides

RP chromatography De novo

Good front-end
separation

Mass of the intact
protein is not
accessible directly

Ion-exchange
chromatography

Library
search

Chemical
derivatization

Loss of labile PTMs Affinity
chromatography

aEST, expressed sequence tag; PTM, posttranslational modifications; RP, reverse phase resins; ICR, ion cyclotron resonance; LIT, linear ion trap; ECD,
electron capture dissociation; ETD, electron transfer dissociation; ESI, electrospray ionization; PMF, peptide mass fingerprinting; Q-TOF, quadrupole
time-of-flight.

ETD: electron
transfer dissociation

the top-down method. Drawbacks of the bottom-up approach include limited protein sequence
coverage by identified peptides, loss of labile PTMs, and ambiguity of the origin for redundant
peptide sequences.

5.2. Top-Down Methods

Top-down methods use masses of intact proteins and their fragments for successful identifications.
Alternative fragmentation reactions, such as electron capture dissociation (ECD) (67) and electron
transfer dissociation (ETD) (151, 152), that yield a more complete backbone sequencing and
retain labile PTMs (153) are the preferred fragmentation methods of the top-down approach.
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SILAC: stable isotope
labeling with amino
acids in cell culture

Top-down data are usually analyzed using the expressed sequence tag (EST) method (154, 155)
or the de novo method (156). Some of the benefits of the top-down approach include higher
sequence coverage of target proteins (157) and better characterization of the posttranslational
modifications (158, 159). Compared with bottom-up approaches, the higher sequence coverage of
top-down experiments reduces the ambiguities of the peptide-to-protein mapping, which allows
for identification of the specific protein isoforms (160, 161). Another reported advantage of the
top-down approach is improved reliability of protein quantification (66, 162, 163) when protein
abundances are measured directly instead of using abundances of peptides. However, there are
several technological limitations to the top-down method, which keeps it from widespread use.
Front-end separation of intact proteins is more challenging than the separation of peptide mixtures.
This means that larger quantities of protein and higher mass accuracy instruments such as FTMS
(130) and LTQ-Orbitrap (58, 66) are required to resolve isotopic envelopes of coeluting proteins.
Furthermore, generic and efficient methods to fragment large proteins are not available yet. Owing
to these technical limitations, the scope of the top-down approach has been limited to the analysis
of single proteins and simple protein mixtures. However, some of the recent studies (164, 165)
have extended the top-down approach to complex mixture analysis. In addition to discussing the
overall workflow, we emphasize below two proteomic applications: protein quantification and
phosphoproteome analysis.

6. PROTEOMIC APPLICATIONS—QUANTITATIVE PROTEOMICS

A key advantage of the large-scale proteomic for systems biology is the capability to quantify
functional entities of the cell, the proteins. The overall goal of such measurements is to obtain a
snapshot of concentrations of proteins associated with different states. Quantitative measurements
of protein concentrations represent one of the key components toward building a functional
network. There are two broad groups of quantitative methods in MS-based proteomics, (a) relative
quantitative proteomics and (b) absolute quantitative proteomics. Relative quantitative proteomics
can compare two or more samples using either stable isotope–labeling methods or label-free
methods.

Isotope labels can be introduced (a) metabolically, (b) chemically, or (c) enzymatically (166).
Metabolic labeling represents the earliest point of marking proteins with the stable isotopes of
elements (15N) or stable isotopes of amino acids (heavy Arg, Lys, Leu, and Ile). In early studies,
total labeling of yeast has been achieved using 15N-enriched cell culture media (167). For the sta-
ble isotope labeling by amino acids in cell culture (SILAC) approach, cell media contain 13C6-Lys
and 13C6, and 15N4-Arg for comprehensive labeling of tryptic cleavage products (166). In vivo
metabolic 15N labeling of model organisms such as Caenorhabditis elegans, Drosophila melanogaster
(168), and rat (169) has been reported. The relative-abundance ratio of peptides is experimen-
tally measured by comparing heavy/light peptide pairs, and then protein levels are inferred from
statistical evaluation of the peptide ratios. Examples of chemical derivatization techniques for
quantitative proteomics include isotope-coded affinity tags (ICAT), used for the labeling of free
cysteine (148), and isobaric tags for relative and absolute quantification (iTRAQ), used for the
labeling of free amines (170). Chemical derivatization procedures can be applied to any sample at
either the protein or the peptide level. Enzymatic labeling usually incorporates 18O either during
or after digestion. Absolute measurements of protein concentrations can be achieved with spiked
synthetic peptides (171), artificial proteins derived from detected peptides, as in QconCAT (172),
and SILAC (173). In this review, we describe some of the applications of quantitative methods to
cell signaling proteomics.
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6.1. Isobaric Tags for Relative and Absolute Quantification

Multiplexing tagging chemistry for iTRAQ affords monitoring of four to eight samples in a single
experiment (174). In a typical iTRAQ experiment, peptide levels are inferred from MS/MS spec-
tra. Initially, iTRAQ experiments were carried out on Q-TOF instruments (170, 175) because
quadrupole (176) and TOF instruments are capable of detecting low m/z fragment ions in the re-
gion of the iTRAQ reporter ions, unlike ion traps in which recovery of ions in the mass range below
30% of the precursor’s ion mass is very poor. Introduction of pulsed Q dissociation (PQD) (177)
in the ion trap facilitates detection of iTRAQ reporter ions, bridging the gap between the linear
ion trap with PQD and a quadrupole TOF instrument (178). Emerging reports show applicability
of ETD for peptide (32) and protein (179) quantification with an ETD-enabled LTQ-Orbitrap.

6.2. Stable Isotope–Labeling by Amino Acids in Cell Culture

The SILAC approach labels proteins with one or more heavy amino acids: Leu (180), Arg, Lys
(166), and/or Tyr (181). SILAC-labeled peptides are quantified from full-scan mass spectra. Nu-
merous studies applied SILAC to studying dynamic changes in response to stimuli (182, 183).
Recently, SILAC has been applied to labeling of primary cells (184) and mice (185). Quantita-
tive accuracy, however, requires complete incorporation of the labeled amino acids, as metabolic
conversion of arginine to proline results in tryptic peptides containing heavy prolines (186). Ex-
perimental or bioinformatics solutions can be used to minimize interference from incompletely
labeled peptides (187–189).

When isotopic labeling is not applicable, the label-free techniques can be used in abundance-
based proteomics. Label-free methods use either spectral counting or peptide signal intensity
to estimate abundance of proteins (37). Spectral sampling is directly proportional to the rela-
tive abundance of the protein in the mixture (190). Comparison of spectral counting methods
with 14N/15N metabolic labeling showed strong correlations between these two approaches for
quantitative proteomics by MudPIT (191).

6.3. Software for Quantitative Proteomics

Automated quantification of complex proteomes necessitates additional software solutions (192).
One such solution is Census, a software tool for analyzing quantitative MS data (189). Census is
a flexible tool that can handle quantitative proteomic data, including 15N, SILAC, iTRAQ, and
label-free experiments (Figure 3a). Briefly, for isotopically labeled analyses, Census incorporates
the following steps. For high-resolution MS data acquired with a LTQ-Orbitrap, Census employs
an algorithm that extracts individual isotopes using a mass accuracy tolerance. This method is very
effective in excluding noise peaks, and it results in high correlation for chromatograms. Census
calculates peptide ion-intensity ratios for each peptide pair using a linear least squares correlation
(i.e., slope of the line) and closeness of fit [i.e., correlation coefficient (r)] between data points of
labeled and unlabeled ion chromatograms (193).

Census determines the protein ratios by calculating a weighted average of all peptide ratios
quantified for a specific protein. Weights are determined by considering the errors associated with
each peptide ratio measurement or, more precisely, the inverse square of the standard deviation
of the measurement. A similar approach for calculating protein ratios has been reported (194).
Census removes statistical outliers for proteins with more than three quantified peptides. Standard
deviations are calculated for all proteins using their respective peptide ratio measurements.
Finally, a Grubbs test (195) is applied with a user-defined p-value to remove outlier peptides.
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Figure 3
Schematic detailing the quantitative analysis capabilities of Census. (a) Use of Census with isotopic labeling (see text). (b) Use of Census
with label-free analysis. For chromatogram alignment, Census uses a Pearson correlation between mass spectra and dynamic time
warping (255). After alignment, chromatograms are extracted as described. LC, liquid chromatography. Reprinted with permission
from Reference 189.

Census is capable of achieving en masse quantification of proteins for high-complexity samples
analyzed with MudPIT.

7. PROTEOMIC APPLICATIONS—PHOSPHOPROTEOMICS

7.1. Enrichment Techniques

Protein kinases control every basic cellular process, including metabolism, growth, division, dif-
ferentiation, motility, organelle trafficking, immunity, learning, and memory via regulated protein
phosphorylation (196). MS is the method of choice for accurate identification and quantification
of phosphorylation sites.

One of the most common strategies for enrichment of phosphoproteomes is a combina-
tion of chromatography with affinity-based enrichments. These chromatography techniques in-
clude IMAC, immunopurification, metal oxide affinity chromatography (MOAC), and strong
cation-exchange chromatography. In addition to chromatographic methods, the antibodies against
phosphoamino acid epitopes, magnetic materials, and nanoparticles (197) as well as metal ion-
phosphopeptide precipitations are part of the toolbox for the affinity-based enrichment of
phosphopeptides. Another route is to enrich phosphopeptides using chemical derivatization
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techniques of phosphate groups (198). Comparison of IMAC, MOAC, and phosphoramidate
chemistry methods highlights the complementary nature of enrichment (199).

IMAC uses metal chelators such as iminodiacetic acid and nitrilotriacetic acid linked to chro-
matographic support to immobilize metal ions. Available coordination sites of positively charged
ions interact with negatively charged groups of phosphate and carboxylate moieties. Either low pH
buffer or chemical derivatization increases the specificity of IMAC for phosphopeptides. Peptide
IMAC is one of the techniques for second-round enrichment of phosphopeptides, following strong
cation exchange chromatography (200, 201) or protein IMAC (202, 2003); however, MOAC does
not require a charging step because the metal ions are part of a solid metal bead, and consequently,
material such as titanium dioxide is widely used for enrichment of phosphopeptides (116). By
limiting nonspecific interactions, 2,5-dihydroxybenzoic acid (DHB) (204) and aliphatic hydroxyl
acids (205) increase selectivity of TiO2.

In solution, interaction of phosphopeptides with certain metal ions can be used for enrichment.
Both Ba2+ and Ca2+ ions have been shown to enrich phosphopeptides (206, 207). In addition to the
enrichment, Ba2+/acetone precipitation was shown to further separate phosphorylated peptides
based on the number of phosphate groups, using a stringent false-positive rate (206). Complexes
of metal-phosphopeptides can be further separated by IMAC, RP (207), and MudPIT (206).

An alternative enrichment method for phosphopeptides is HILIC. HILIC partitions pep-
tides between a hydrophilic layer and the hydrophobic elution buffer. HILIC fractionation with
an IMAC compatible buffer (salt-free TFA/acetonitrile) constitutes an attractive alternative for
screening phosphoproteomes (120).

Compared with the serine and threonine phosphorylation, investigation of the phosphoty-
rosine proteome relies almost exclusively on immunoaffinity purifications (208). Proteome-scale
screening of phosphotyrosines has been extended to the identification of oncogenic kinases (209),
identification of core proteins responding to drug treatment (210), and definition of the organ-
specific phosphorylation (201). An alternative to immunopurification of phosphotyrosine peptides
is dendrimer conjugation chemistry (211). In this strategy, a solution polymer that has functional
groups only at its surface (a dendrimer) reacts with any phosphorylated peptide. Following the
spin-column filtration and acid hydrolysis, a considerable number of previously unidentified phos-
photyrosine proteins were described.

7.2. Fragmentation Methods for Identification of Phosphopeptides

In bottom-up proteomics, phosphopeptides are traditionally fragmented by CID (212). To ac-
count for the ubiquitous presence of phosphate neutral losses, a neutral loss–triggered MS3 data–
acquisition method has been introduced for phosphoproteome analysis (213). ECD and ETD
help to identify different segments of phosphoproteomes (214, 215). Successive acquisition of
CID and ECD fragmentation spectra has been shown to aid in localizing phosphorylation sites
(216). Another alternative for structural characterization of phosphopeptides using high mass ac-
curacy may be high-energy collision-induced dissociation (HCD) (217) carried out in a separate
octapole collision cell added to the LTQ-Orbitrap. One of the features of HCD spectra is the
presence of both b- and y-series ions in addition to immonium ions, which highlights the presence
of a modified residue.

7.3. Identification of Phosphopeptides and Phosphorylation Sites

Identification of phosphopeptides is based on database searches. As with any database search, the
decoy database is used to filter out false-positive identification (218). Lu et. al have developed a
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Figure 4
Distribution of extracted feature-precursor neutral loss (NL)/base peak (BP) ratio for the training set. The
plots show the distributions of features for 944 positive spectrum/peptide identifications and 944 negative
spectrum/peptide identifications (randomly selected from the 1064 negative training spectrum/peptide
matches). Reprinted with permission from Reference 219.

suite of algorithms for automatic analysis of phosphopeptides. An SVM-based supervised classifi-
cation method trained on neutral loss features from ion trap tandem mass spectra is used to provide
high-confidence identifications. They showed that phosphate neutral loss from the base peak is the
most informative SVM feature in validating the identification of Ser/Thr-containing phosphopep-
tides (219) (Figure 4). For shotgun phosphoproteomic experiments, algorithms with SVM-trained
features can filter potential phosphopeptide spectra before a database search (220). This is fol-
lowed by phosphorylation site localization that describes positions of phosphorylated residues
(221, 222).

7.4. Quantification of Phosphorylation Sites

Several quantities related to site-specific phosphorylation are usually measured in an MS assay:
changes in relative abundance in response to stimuli, stoichiometry of phosphorylation sites,
and the site occupancy. Quantitative phosphoproteomics is used to depict temporal profiles of
activated pathways (222). Mitotic phosphorylation events were shown to involve more than 1000
proteins described by 14,000 phosphopeptides (223). An AbsoluteQUAntification (AQUA)-based
approach quantified inhibitory phosphorylation of adjacent sites of cyclin-dependent kinases (224).
Alternatively, absolute quantification of protein phosphorylation can be achieved by inductively
coupled plasma (ICP)-MS (225). Distinct labeling of phosphorylation sites can be achieved through
either Tyr-SILAC (181) or γ [18O4]-ATP (226).

Occupancy of phosphorylated sites describes the level of phosphorylation compared with the
unmodified site. Different methods have been introduced to characterize occupancy of phospho-
rylation sites (227–229). Determination of occupancy rates of modified sites can shed light on
mechanisms of signal transduction. For example, two or more modifications can directly compete
for the same single residue in a negative cross talk (230). New developments in top-down and
quantitative proteomics could provide insights into proteotyping (231) of phosphorylation site
occupancy (232) and into competition of different modifications for the same residue (233).
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7.5. Motifs Present in Phosphoproteomes

Kinases recognize short linear sequences around the preferred site of phosphorylation, known
as phosphorylation motifs. In proteomic-based discovery, phosphorylation motifs can function as
affinity reagents for ligands such as monoclonal antibodies or free-metal ions. In one application,
an antibody toward the protein kinase C (PKC) recognition sequence has been used to enrich for
a phosphomotif-specific subproteome (234). More recently, a panel of 68 antibodies specific for
SQ/TQ motifs enriched the subproteome involved in the response to DNA damage (235). A total
of 905 phosphorylation sites from 700 proteins changed more than fourfold in irradiated cells as
compared with nonirradiated cells. The role of the newly identified substrates of ataxia telang-
iectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases in DNA-damage response
was further investigated by depleting these proteins with small interfering RNA (siRNA). From
an interrogated subset of 37 substrates, a large fraction (35 substrates) contributed to at least one
phenotype of DNA-damage response. Therefore, quantitative measurements of the phophoryla-
tion state of motif-specific subproteomes proved useful in selecting protein candidates for further
functional studies.

Complementary to immunoaffinity techniques, customized bioinformatics tools, such as Motif-
X, can mine for phosphorylation motifs potentially preferred by kinases (236). Motif-X statistically
analyzes sequences of amino acids bracketing phosphorylation sites localized in MS assays. On
subtraction of background sequences, Motif-X output represented proportional frequencies of
preferred amino acids for a total of 13 positions. Alternatively, a peptide-oriented library and a
position-scoring matrix can outline strongly favored and strongly disfavored residues in sequences
around sites phosphorylated by different kinases (237). Yet other bioinformatics algorithms, such
as artificial neural networks (238), can further refine the list of kinase-preferred sites.

Phosphorylated motifs can also be selected from complex proteome mixtures. We have
shown that sequences around phosphosites can act as an affinity molecular reagent in metal-
phosphopeptide interaction modulated by the solution pH (206). This interaction was sufficient
to facilitate precipitation of metal-phosphopeptide complexes in solvents with low organic concen-
tration. Direct application of sequence logos (239) identified strongly favored residues precipitated
by Ba2+/acetone (Figure 5). Acidic amino acids and Pro-directed motifs were enriched at different
pH values. We have also outlined a subset of doubly phosphorylated motifs that contained acidic
residues around phosphorylation sites (Figure 5).

Functional characterization of phosphorylation motifs involves a combination of the bioin-
formatic and experimental approaches. Motifs were, in silico, extracted from detected phospho-
tyrosine proteomes, and corresponding peptides were synthesized (240). Quantitative pull-down
assays (241) tested motif-peptides for binding to Src Homology 2 (SH2) and phosphotyrosine
binding (PTB) domains. The authors found 15 novel phosphorylation-dependent interactions
and identified a new hydrophobic N-terminal motif as a binding motif for the SH2 domain.

7.6. Connecting Phosphoproteome and Kinome

Mapping of phosphoproteomes identifies an ever-increasing number of phosphorylation sites in
systems as diverse as D. melanogaster (199) and HeLa cell lines (223). A daunting challenge is to
map connections between phosphorylated substrates and their respective kinases (242). Recent
technological developments could translate into routine assays of kinase substrates through direct
labeling (243). One such example is the engineering of analog-specific (AS) kinase alleles that use
ATP-γ -S, resulting in thiophosphorylation of protein substrates (244). Alkylation of thiophos-
phorylated residues creates a unique epitope, leading to immunopurification of direct substrates
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Figure 5
Sequence logos of phosphopeptides from nuclear extract of HeLa cells. (a) pH 3.5, (b) pH 4.6, and (c) pH 8.0◦. Sequence logos were
built for amino acids forming the binding pockets of Ba2+ ions (−5 to +5 AAs). Sequence logos statistically evaluate the binding
properties of a population of phosphopeptides by measuring the information (in bits) required at each position around the phosphosite
for interaction with barium ions. (d ) Sequence logo profiles of doubly phosphorylated peptides identified in a pH 3.5 Ba2+/acetone
fraction of HeLa cell nuclear extract. Reprinted with permission from Reference 206.

accompanied by MS identification (245). Currently, a repertoire of 40 AS kinases exists, and it is
estimated that most kinases can be engineered in AS alleles (246).

7.7. Kinases and Signaling Pathways

Effective drug discovery can benefit from a set of simple molecular rules that can substitute for a
distinct link in diseases with complex etiologies. Intracellular molecular signaling pathways rep-
resent one such set of rules (247). By different definitions, there are between 16 and 200 signaling
pathways (247, 248). Understanding the role of signaling pathways for a given biological context
(e.g., stimuli, diseases) requires measurement of (a) pathway outputs, (b) dynamic changes, and
(c) cross talk. Signaling proteins (i.e., kinases, phosphatases, scaffold proteins) are usually present
in low amounts as compared with housekeeping proteins. Therefore, different approaches that
specifically interrogate a subproteome or classes of proteins are particularly useful. Affinity
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techniques facilitate analyses of subproteomes associated with pathways or low-molecular-weight
chemicals.

Several studies investigated activation of the epidermal growth factor receptor (EGFR) signal-
ing pathway (175, 249). Using LTQ-Orbitrap (41) and applying sequential enrichment by SCX
and TiO2, researchers monitored changes in as many as 6600 phosphorylation sites over five
time points (222). Mapped phosphorylation sites and their temporal profiles were deposited in
a phosphorylation-site resource database (250). An alternative to large-scale quantitative phos-
phoproteomics is to target a subset of identified phosphorylation sites by using multiple-reaction
monitoring of stable isotope-labeled peptides (176). Although only a few hundred proteins can be
profiled with a targeted approach, almost 90% of the targets were reproducibly quantified across
four time points. To achieve high sensitivity detection of phosphorylation sites, these discovery
or targeted-mode quantitative studies required high specificity enrichment. Consequently, quan-
tification of protein expression levels, even if possible, has not been performed. Recent studies
quantified both phosphorylation levels and protein levels for mitotic phosphorylation (223), cell
cycle kinases (251), and the beta-adrenergic pathway (206) (Figure 6).
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Figure 6
Log2 ratio of protein expression levels and their corresponding phosphorylation levels during isoproterenol
stimulation from 30 sec to 2 min. Protein expression levels were derived from 2066 peptide ratios.
Phosphorylation levels were derived from 398 phosphopeptide ratios. Protein expression levels were
calculated from both peptides and phosphopeptides signals. Up- and down-regulation were considered
significant for protein expression levels with a ratio of 2 or 0.5, respectively. If phosphopeptide signals were
to be substracted from protein ratios, expression levels would distribute closer to a ratio of 1. Therefore,
protein expression levels were essentially unchanged during 90 s stimulation with isoproterenol. For a ratio
more than two standard deviations away from the mean, we considered peptides to be differentially
phosphorylated (ratio <0.33 and ratio >2.66). The highest increase in phosphorylation levels (16-fold)
belonged to phosphorylation of MAPK1(IPI00376295.1). Thus, we detected changes in phosphorylation
levels of MAPK1, a critical kinase for cross talk with the β-adrenergic pathway. Knowledge analysis of
quantified phosphoproteins identified protein modules from the following canonical pathways: ERK/MAPK
(eight molecules), cardiac beta-adrenergic (four molecules), calcium signaling (four molecules), insulin
receptor signaling (four molecules), and cAMP-mediated signaling (three molecules). The MAPK1-centered
module showed the highest degree of interconnectivity, with seven modules from a total of nine possible
modules. Reprinted with permission from Reference 206.
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ACE-MudPIT:
Anion-Cation-
Exchange
Multidimensional
Protein Identification
Technology

Immobilized cAMP-selected nucleotide-binding proteins yielded a highly enriched fraction
of cAMP interactors using sequential elutions (252). Subsequent MS proteomic assays identified
all known regulatory protein kinase A isoforms, including their phosphorylation states and 11
different A-kinase anchoring proteins. Immobilized low-molecular-weight inhibitors and phos-
phopeptide enrichment were used to characterize cell cycle kinases (251). Several broad-selectivity
inhibitors immobilized on beads captured ∼200 kinases and a subproteome of 600 proteins. This
approach combined with iTRAQ and MS revealed new drug targets selected from cell lysates
(253).

8. OUTLOOK

It is conceivable that discovery-based MS proteomics can be a complement to the conventional
Western blot without the requirement to generate antibodies (254). Simultaneous quantitative
measurements of both protein expression levels and phosphorylation levels are key to this advance-
ment. Orthogonal multidimensional chromatography is at the forefront of these developments.
Emerging applications, such as fractionation procedures and mixed-bed anion-cation-exchange
multidimensional protein identification technology (ACE-MudPIT), already focus the classes of
phosphopeptides and peptides during the same analysis.

High mass accuracy measurements expanded the application range for shotgun phosphopro-
teomics and facilitated coherent interrogation of large-scale data. Software solutions are already
available for quantifying protein expression levels and up/down regulation of phosphorylation.

MS has tremendous potential for broad-based proteomic discovery and should contribute to
important biological discoveries.
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