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Cell migration is an evolutionarily conserved mechanism that underlies
the development and functioning of uni- and multicellular organisms and
takes place in normal and pathogenic processes, including various events
of embryogenesis, wound healing, immune response, cancer metastases,
and angiogenesis. Despite the differences in the cell types that take part
in different migratory events, it is believed that all of these migrations
occur by similar molecular mechanisms, whose major components have
been functionally conserved in evolution and whose perturbation leads to
severe developmental defects. These mechanisms involve intricate cyto-
skeleton-based molecular machines that can sense the environment,
respond to signals, and modulate the entire cell behavior. A big question
that has concerned the researchers for decades relates to the coordina-
tion of cell migration in situ and its relation to the intracellular aspects of
the cell migratory mechanisms. Traditionally, this question has been
addressed by researchers that considered the intra- and extracellular
mechanisms driving migration in separate sets of studies. As more data
accumulate researchers are now able to integrate all of the available in-
formation and consider the intracellular mechanisms of cell migration in
the context of the developing organisms that contain additional levels of
complexity provided by extracellular regulation. This review provides a
broad summary of the existing and emerging data in the cell and develop-
mental biology fields regarding cell migration during development. Birth
Defects Research (Part C) 84:102–122, 2008. VC 2008 Wiley-Liss, Inc.

INTRODUCTION
Cells of the developing embryo
undergo a highly complex chain
of events that define their correct
shape and positioning during orga-
nogenesis and in the tissues and
organs of the adult body. Among
these events, a crucial role belongs
to coordinated cell migration that
involves movement of cells of differ-
ent lineages over short and long dis-
tances throughout the body. Defects
of migration at all stages of develop-
ment lead to severe embryonic mal-
formations and result in drastic
overall consequences, ranging from
early embryonic lethality to birth
defects and accounting for multiple
human syndromes, including neuro-
logical disorders, congenital heart

diseases, and physical and mental
retardation.
Migration is an evolutionarily

conserved mechanism that under-
lies the development and function-
ing of uni- and multicellular organ-
isms and takes place in normal and
pathogenic processes, including
various events of embryogenesis,
wound healing, immune response,
cancer metastases, and angiogene-
sis. Despite the differences in the
cell types that take part in different
migratory events, it is believed that
all of these migrations occur by
similar molecular mechanisms,
whose major components have
been functionally conserved in evo-
lution for over a billion years, from
protozoa to mammals.

Molecular mechanisms of migra-
tion have been extensively studied
over the past decades (see Pollard
and Borisy, 2003; Ridley et al.,
2003; Vicente-Manzanares et al.,
2005 and Cell Migration Gateway
www.cellmigration.org for over-
views). Although many mysteries
underlying the regulatory mecha-
nisms of migration still remain to be
uncovered, significant progress has
been made in the mechanistic
understanding of migration and the
major molecular events that occur
inside the cell during directional
movement. Most of these studies
have been conducted in culture,
where cells move on hard, two-
dimensional surfaces rather than in
the three-dimensional environment
of the tissues composing the
embryo. Special aspects of cell
migration on different matrices and
surfaces of different stiffness that
mimic the tissue environment in situ
have recently become a focus of cell
biology research, but a gap still
exists between the mechanistic
studies of cell migration in culture
and embryonic migration in situ.
Vast amounts of data have been
accumulated in both fields, however
developmental biologists tradition-
ally devote more attention to the
external signaling molecules that
control the migration on the global
tissue and organismal level, while
cell biologists focus more on the in-
tracellular molecules involved in
migration of individual cells. The
connection between the molecular
mechanisms of cell movement in
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culture and in situ, as well as the
general nature of the mechanisms
of cell migration regardless of spe-
cific environment, is rarely empha-
sized in the current literature.
The goal of this review is to bridge

these two fields and present a broad
overview of the studies of the
mechanisms of cell migration in cul-
ture and in embryogenesis,
with emphasis on the similarities
between the mechanisms that
underlie the major embryonic mi-
gratory events. We focus on the in-
tracellular mechanisms that control
cell migration and are common for
most of the migratory cell types and
use mouse development as a model
of the migration processes in situ.

BASIC PRINCIPLES OF

CELL MIGRATION

Overall Structure of the
Cell-Leading Edge

To initiate migration in a develop-
ing organism, individual cells re-
ceive signals, which set in motion
the complex and highly coordinated
molecular machinery that drives
these cells to move in the right
direction with the appropriate
speeds and to arrive at their desti-

nations at exactly the right time.
Although on the organismal level
migration is initiated and coordi-
nated by global extracellular signal-
ing, for each individual cell, it is
regulated from within, by forming
transient structures that allow the
cell to polarize, protrude, and retract
in response to its environment.
Migration is a cyclical process, in

which the cell polarizes to form an
active leading edge that extends
dynamic protrusions toward the cell
front, and a trailing edge that
retracts as the cell moves forward
(Fig. 1) (Lauffenburger and Horwitz,
1996; Pollard and Borisy, 2003; Rid-
ley et al., 2003). The major struc-
tures that define the leading edge
activity of a migrating cell are
lamella, lamellipodia, and filopodia.
Lamella is a broad, highly active
zone that encompasses the area
inward from the leading edge. Many
of the mechanistic and regulatory
events responsible for cell migration
and leading edge activity take place
in the lamella. Its outer zone, a thin
area at the extreme cell edge, is
defined as lamellipodia. In a polar-
ized migrating cell, lamellipodia is
highly active in defining the direction
of the cell movement. Another type
of leading edge structures, thin fin-
gerlike protrusions called filopodia,
are believed to be responsible for

exploring the environment during
motility (Faix and Rottner, 2006;
Gupton and Gertler, 2007).
Although it has been suggested that
the inhibition of lamellipodia
(Gupton et al., 2005; Yang et al.,
2007) or filopodia (Yang et al.,
2007) does not inhibit cell motility, it
results in defects in cell migration
speed and directionality. Although
apparently subtle in vitro, such
defects are likely to result in a critical
handicap during in situ migration
through tissues. Both lamellipodia
and filopodia are always seen at the
edge of the locomoting cells, and
their relative balance is believed to
regulate specific aspects of migra-
tion of different cell types.

Four Steps of Migration:
Polarization, Protrusion,
Adhesion, and Retraction

Polarization. To move in a cer-
tain direction, a cell first needs to
polarize in that direction, that is,
to define its front (that will move
forward) and its back (that will
remain in the rear and retract as
the leading edge protrudes). The
central regulators of establishing
this polarity are Rho family small
GTPase Cdc42 (Etienne-Manneville
and Hall, 2001; Itoh et al., 2002),
Par proteins, and atypical protein

Figure 1. Cell migration. A schematic representation of a generic cell of mesenchymal
morphology migrating directionally along a two-dimensional substrate. Polarization,
mediated by signaling molecules, defines the leading and the trailing edge of the cell and
the direction of migration. Lamella, lamellipodia, and filopodia are responsible for the ac-
tivity and directionality of the leading edge, whose protrusion is mediated by the branched
actin network. A cell attaches to the substrate via dynamic focal adhesions. Actin fila-
ments in the cytoplasm to the rear of the lamella form stress fibers that transmit the myo-
sin-mediated tractional forces to propel the cell movement and regulate the trailing edge
retraction via actomyosin contractility. See the explanation in the text for further details.

Although on the
organismal level

migration is initiated
and coordinated by
global extracellular
signaling, for each
individual cell, it is

regulated from
within, by forming
transient structures
that allow the cell to
polarize, protrude,

and retract in
response to its
environment.
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kinase (aPKC) (see (Ridley et al.,
2003) for overview). Additional
signals are provided by a gradient
of phosphatidylinositol triphos-
phate (PIP3) (decreasing from
front to rear), produced by the
action of phosphoinositide-3 ki-
nase (PI3K), and regulated by
PTEN, a PIP3 phosphatase, which
is located to the cell rear and con-
trols the lower level of PIP3 at the
trailing edge. Thus, polarization is
a complex, highly coordinated
process that encompasses the
entire cell, from front to rear.
Signal gradients during cell polar-

ization are closely followed by cyto-
plasm rearrangement and organelle
repositioning. The central role in
this rearrangement belongs to the
actin filaments that provide the
major driving force for the subse-
quent cell movement, but other or-
ganelles and cytoskeletal systems
also participate in this process. The
microtubule organizing center reor-
ients to the front of the nucleus to
serve as rails for vesicle transport
toward the leading edge. This reor-
ientation is closely coordinated with
the reorientation of Golgi apparatus
to the front of the nucleus. Both
events occur rapidly after cell polar-
ization (Gotlieb et al., 1981; Kupfer
et al., 1982, 1983; Gundersen and
Bulinski, 1988; Etienne-Manneville
and Hall, 2001). In the cell rear, the
increased PTEN activity is corre-
lated with the activity of myosin
II—an actin-dependent molecular
motor that ensures the trailing
edge contractility and retractive
behavior.
Remarkably, cell fragments that

lack nuclei and centrosomes are
also capable of directional motility
(Euteneuer and Schliwa, 1984;
Verkhovsky et al., 1999), suggest-
ing that the organelle rearrange-
ment is secondary to other polar-
ization events and may not be
required for cell motility. En-
ucleated centrosome-free cell
fragments have been shown to
possess a functional cytoskeletal
array (Rodionov and Borisy, 1997;
1998; Vorobjev et al., 2001; Mali-
kov et al., 2005), suggesting that
the critical role in motility of cells
as well as cytoplasmic fragments
belongs to the cytoskeleton and

regulatory molecules, regardless
of the presence or absence of
other major organelles.
It has been traditionally believed

that cell polarization, especially
when it occurs in response to
external stimuli (e.g., chemo-
taxis), originates at the cell front
and is initiated by protrusion of
the leading edge. However, in
spontaneously polarizing cells, the
contraction of the rear end
actually precedes the leading edge
protrusion (Chen, 1979; Dunn and
Zicha, 1995; Verkhovsky et al.,
1999; Yam et al., 2007). Recent
quantitative analysis of spontane-
ous polarization in fish keratino-
cytes (Yam et al., 2007) suggests
that cell polarization signals are
initiated near the nucleus and at
the cell rear rather than at the
leading edge. Because, during de-
velopment, the migratory cell
types are often not polarized at all
before the initiation of the migra-
tion at the tissue and organismal
level, it appears highly likely that
polarization signals in situ may
originate at different cell locations
to define the leading and trailing
edge, and that multiple mecha-
nisms may exist to ensure that
this polarization occurs promptly,
uniformly, and unambiguously in
all cells of the migrating layer.
Protrusion. Protrusion of the

cell leading edge is the actual start
of the cell migration cycle. The
mechanical force for protrusion is
provided by the polymerization of
actin filaments at the leading
edge, either as long parallel bun-
dles to form filopodia, or as a
branched dendritic network during
lamellipodia formation (Svitkina
and Borisy, 1999; Pollard and
Borisy, 2003; Ridley et al., 2003;
Ponti et al., 2004; Vicente-Manza-
nares et al., 2005). In both cases,
addition of actin subunits onto the
fast-growing ‘‘barbed’’ ends of the
actin filaments physically pushes
the membrane forward in the
direction of migration. As the cell
moves, the leading edge filaments
are disassembled from the rear-
facing, slow-growing ‘‘pointed’’
ends, creating a polymerization-
depolymerization-driven ‘‘machine’’
often referred to as the ‘‘actin

treadmill.’’ In such a ‘‘treadmill,’’
the force of actin polymerization
at the front is coupled to the dis-
assembly of the actin network at
the rear of the lamellipodia, pro-
pelling the leading edge forward
along the substrate (Watanabe
and Mitchison, 2002; Pollard and
Borisy, 2003; Ponti et al., 2004;
Machacek and Danuser, 2006).
Based on actin filament stiffness,
it has been calculated that the
‘‘free’’ length of the actin filaments
pushing the leading edge has to
be quite short (less than 150 nm)
to create sufficient force for mem-
brane protrusion (Mogilner and
Oster, 1996), suggesting that the
filament length in the treadmill
must be very tightly regulated to
achieve the most efficient forward
movement.
Assembly of different types of

actin structures at the leading
edge is achieved by two different
actin-nucleating mechanisms (Pol-
lard, 2007). The first mechanism
is mediated by the Arp2/3 com-
plex (Welch et al., 1997; Mullins
and Pollard, 1999; Welch and Mul-
lins, 2002; Goley and Welch,
2006) that interacts with the sur-
face of the existing actin filaments
to create sites of branching for
new actin polymerization and
ensure actin assembly into the
dendritic network that drives the
protrusion of lamellipodia. The
second mechanism is mediated by
formins (Zigmond et al., 1998;
Pruyne et al., 2002; Zigmond,
2004; Goode and Eck, 2007) that
drive actin assembly into parallel
cross-linked bundles that serve as
a structural basis for filopodia.
The predominant role in the sig-

naling events that regulate cell
protrusion during migration be-
longs to small GTPases of the Rho
family (Etienne-Manneville and
Hall, 2001). When bound to GTP,
they are active and interact with
their downstream targets, includ-
ing protein kinases, lipid-modify-
ing enzymes, and activators of the
Arp2/3 complex. The major play-
ers in the cell protrusion machin-
ery are Rac and Cdc42, whose
downstream targets of the WASP/
WAVE family activate the Arp2/3
complex that regulates the forma-
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tion of branches on actin filaments
at the leading edge. Additional
factors that are important in the
network formation and mainte-
nance are regulators of actin po-
lymerization, such as profilin that
binds and targets actin monomers
to the barbed ends, therefore pre-
venting self-nucleation and ensur-
ing actin incorporation into the
proper network, and ADF/cofilin
that severs the filaments at the
branch points (debranching) and
promotes depolymerization from
the pointed ends. In filopodia,
anticapping proteins, such as Ena-
VASP and their partners (Bailly
et al., 1999; Krause et al., 2004;
Lafuente et al., 2004) and bun-
dling proteins, such as fascin
(Adams, 2004a,b), are especially
important. A large number of
other actin-binding proteins par-
ticipate in the leading edge actin
dynamics, facilitating different
stages of actin assembly, disas-
sembly, sequestering, and cross-
linking. Identification of these
proteins and their role in the lead-
ing edge dynamics constitutes an
exciting field of research.
Adhesion. Once the protrusion

of the leading edge has formed, it
needs to attach to the surrounding
matrix and stabilize, so that the
moving cell can use it as a ‘‘push-
off’’ point to move forward. The
central role in this attachment
belongs to integrins, transmem-
brane proteins that indirectly bind
the ends of the actin filaments on
the inside and attach to the
extracellular matrix on the out-
side, providing stable points of the
cell interaction with the environ-
ment.
Integrins are heterodimeric pro-

teins, consisting of different com-
binations of a and b chains that
are responsible for binding to dif-
ferent matrices (Delon and Brown,
2007; Takada et al., 2007; Lock
et al., 2008). As they bind to their
extracellular ligands, they change
conformation, promoting activa-
tion of intracellular signaling cas-
cades that lead to changes in all
the signaling molecules that par-
ticipate in the leading edge activ-
ity. Integrin activation on the
cytoplasmic side is mediated by

talin binding and involves protein
kinase C (PKC), small GTPases
(Rap1), and PI3K signaling path-
ways. Such activation is followed
by integrin clustering (achieved by
binding to multivalent ligands and
regulated by Rac) and recruitment
of structural and signaling proteins
to form nascent adhesions that
eventually maturate to focal adhe-
sion.
Focal adhesion formation and

maturation is coupled to the as-
sembly of prominent actin stress
fibers and is believed to be medi-
ated by actin interaction with the
molecular motor myosin II
(Rottner et al., 1999; Schoen-
waelder and Burridge, 1999; Gei-
ger and Bershadsky, 2001; Gal-
braith et al., 2002; Giannone
et al., 2007). Myosin and its regu-
latory machinery play a major role
in creating and maintaining trac-
tional forces that enable the cell to
attach and propel itself over the
substrate (Even-Ram et al., 2007;
Iwasaki and Wang, 2008). The
strongest forces in a migrating cell
are transmitted through the focal
adhesions in the leading lamella
and the retracting regions in the
cell rear (Beningo et al., 2001).
As the cell moves forward, focal

adhesions disassemble to release
the cell for a new phase of the
migration cycle. At the leading
edge of the cells, focal adhesion
disassembly accompanies the for-
mation of new protrusions and as-
sembly of new adhesions at the
front (Webb et al., 2002). Some
adhesions, mature and persist to
form larger, more stable struc-
tures that provide firm attachment
sites. Although little is known
about the mechanisms that deter-
mine the fate of each particular
adhesion, it has been suggested
that some focal adhesions are tar-
geted for disintegration by the
dynamic ends of the microtubules
in a process sometimes referred to
as the ‘‘kiss of death’’ (Kaverina
et al., 1999; Small and Kaverina,
2003). Activation of protein ki-
nases FAK and Src, as well as sig-
naling via Rac and ERK, have also
been shown to contribute to the
adhesion turnover at the leading
edge.

Trailing edge retraction. As
the cell moves forward, the trailing
edge must retract to enable the
cell to advance. An exception to
this rule is the migration of the
neuronal growth cones, which
occurs by the mechanisms similar
to those described above, but
without the movement of the cell
body that remains attached to the
advancing neurite. This feature
prompted some researchers to
refer to growth cones as ‘‘lamellae
on a leash.’’
Persistent adhesions form at the

front and stay as the cell moves
forward to maintain the connec-
tion to the substratum. Their
release at the cell’s trailing edge is
accompanied by stretching, driven
by myosin II contractility, and
regulated by FAK and Src signaling
(Henson et al., 1999; Verkhovsky
et al., 1999; Zhang et al., 2003;
Vallotton et al., 2004; Medeiros
et al., 2006). The stretching force
created during the focal adhesion
release is believed to be sufficient
to open the stretch-activated Ca21

channels that trigger activation of
the calcium-dependent protease
calpain that participates in focal
adhesion disassembly by cleaving
a number of focal adhesion pro-
teins including talin, vinculin, and
FAK (Franco et al., 2004; Franco
and Huttenlocher, 2005). The
release of adhesions at the cell
rear contributes to maintaining the
polarity of the leading edge and
promoting the leading edge activ-
ity, providing positive feedback for
the continued cycle of migration.

Posttranslational Regulation
of Cell Migration

In addition to the activity of pro-
tein kinases and proteases that
posttranslationally regulate pro-
teins involved in the cell migration
cycle by phosphorylation or cleav-
age, emerging data suggest con-
tribution of other posttranslational
modifications to various migra-
tion-dependent events. Of those,
a special place belongs to post-
translational modification of cytos-
keletal proteins. It has been long
known that tubulin undergoes
acetylation that correlates with
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microtubule stability and microtu-
bule-based organelle transport
(Reed et al., 2006; Bulinski,
2007), which is important for the
delivery of membranous compo-
nents for cell polarization and pro-
trusion to the cell-leading edge.
Tubulin is also modified by post-
translational phosphorylation and
detyrosynation, as well as addition
of tyrosine (Raybin and Flavin,
1977a,b), mono- and poly-gluta-
mine (Edde et al., 1990; Audebert
et al., 1993), and glycine (Pless-
mann and Weber, 1997) [see also
(Luduena, 1998) for an overview
of tubulin modifications]. Some of
these tubulin modifications have
been associated with microtubule
stability and found to serve as
markers for cell polarization (Gun-
dersen and Bulinski, 1986; Kha-
waja et al., 1988; Infante et al.,
2000; Erck et al., 2005). Tubulin
modifications by amino acids have
also been implicated in the modu-
lation of microtubule functions in
various types of motile cells
(Raybin and Flavin, 1977a,b;
Redeker et al., 2005).
Actin also undergoes a number

of posttranslational modifications
that have been implicated in nor-
mal and pathological actin-medi-
ated processes (see Sheterline
et al., 1998 for an overview). N-
Terminal aminopeptidation and
acetylation is involved in the early
maturation of the actin monomers
and shown to be essential for nor-
mal actin function (Hennessey
et al., 1991; Rubenstein and Mar-
tin, 1983; Redman and Ruben-
stein, 1984). An emerging role in
cell motility belongs to posttrans-
lational arginylation of actin and
actin-associated proteins (Wong
et al., 2007). Arginylation has
been shown to modulate lamella
formation in motile cells and
determine directionality and speed
of cell migration (Karakozova
et al., 2006).

CELL MIGRATION IN A

THREE-DIMENSIONAL

ENVIRONMENT

Although the basic principles of
cell migration described earlier are

generally applicable to all types of
migratory events in different
motile cells throughout the body,
several aspects of cell migration in
the developing organism are dis-
tinct from those in culture, which
have served as the foundation for
the model of the cell migration
cycle described earlier. These dif-
ferences have to do with the fact
that during embryogenesis cells
migrate through three-dimen-
sional tissues and matrices
that possess distinct physical and
chemical properties, which in
themselves could vary during mi-
gration. The dynamic properties of
these environments introduce an

additional level of complexity into
the signals and molecular interac-
tions that influence the migration
of different cell types. In the sec-
tion below, we give a general
overview of the special aspects
that distinguish cell migration in a
three-dimensional environment of
an organism compared to a two-
dimensional culture.

Extracellular Signaling:
Coordinated Migration of
Layers and Lineages

Cells are capable of chemical
sensing, which enables them to
migrate toward favorable direc-
tions and/or in response to extrac-
ellular chemical stimuli. Although
cells in culture often exhibit

spontaneous, stimuli-independent
polarization, and migration, in the
developing embryo cell migration
is precisely coordinated by extrac-
ellular signals that define the tim-
ing, the direction, and the
final destination for the migrating
cells. Such signals control the
complex events that occur during
embryogenesis, including gastru-
lation, patterning, and tissue and
organ formation. Perturbation of
these signals and the underlying
molecular mechanisms of their
generation lead to drastic abnor-
malities of embryogenesis (Gil-
bert, 2000).
Extracellular signals define the

initial steps of cell polarization to
ensure that large populations of
cells in a certain layer or lineage
initiate their migration synchro-
nously on a tight temporal cue.
However, while external signals
indeed induce preferred direction-
ality and provide the overall cues
for the embryonic migratory
events, their role in the migration
cycle is restricted to the activation
of the intracellular signals that
drive the subsequent migration
steps. Given their strictly extracel-
lular role, such signals were there-
fore excluded from the current
review.

Extracellular Matrix and Force
Sensing: Paving the Pathways
of Migration

Arguably, the most important
aspect that distinguishes between
cell migration in culture and in the
embryo is related to the fact that
in situ cells migrate through a
three-dimensional network of the
extracellular matrix. Although all
cells basically use similar mecha-
nisms of migration, their pathways
and the speeds of movement
through the tissues of the devel-
oping embryo vary a great deal
between cells of different lineages
and types (Table 1). It is highly
likely that this variability is
achieved in large part by the
properties of the surrounding
matrix, which forms structures of
different thickness, strength, and
density, as well as biochemical
composition, facilitating differen-

During
embryogenesis cells

migrate through
three-dimensional

tissues and matrices
that possess distinct

physical and
chemical properties,
which in themselves
could vary during

migration.
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tial migration of cells intended for
various destinations (Trelstad,
1984). Such differentially paved
‘‘roadways’’ in the embryo partici-
pate in the complex embryonic
mechanisms that regulate the for-
mation of different tissues and
organs (Gilbert, 2000).
It has been found that cells

migrating through three-dimen-
sional matrices assume a different
morphology compared to those
migrating on hard two-dimen-
sional surfaces, have different
migration speeds, and may use
additional migratory mechanisms
(Even-Ram and Yamada, 2005),
such as proteolysis of the matrix
at the leading edge, shown to be
used by endothelial cells during
angiogenesis (van Hinsbergh and
Koolwijk, 2008). It has also been
found that even on flat, matrix-
coated surfaces, the amount of
extracellular matrix determines
the speed of migration by balanc-
ing the protrusion and adhesion
steps of the cell migration cycle
(Gupton and Waterman-Storer,
2006). When the concentration of
the extracellular matrix is too low,
cultured cells exhibit a decrease in
the actin flow and form few highly
dynamic adhesions that cannot
sufficiently ‘‘stick’’ to the sub-
strate. When the concentration of
the extracellular matrix is too
high, cells form too many adhe-
sions that are less dynamic and
cannot retract enough to ensure
movement. An optimal, medium,
concentration of extracellular ma-
trix ensures a normal migration
cycle and results in the highest
motility rates. It appears likely
that similar mechanisms are used
in the developing organism, where
varying amounts of extracellular
matrix can ensure great variability
in the migration speeds that are
often observed for cells of the
same lineage during the formation
of different organs (Table 1).
An important property of differ-

ent extracellular matrices in situ is
defined by their mechanical rigid-
ity or stiffness. The relationship of
cell adhesion and motility to the
substrate stiffness has become the
focus of major studies in recent
years (Geiger and Bershadsky,

2001; Georges and Janmey, 2005;
Bershadsky et al., 2006; Vogel
and Sheetz, 2006; Rehfeldt et al.,
2007). It has been found that
force sensing and substrate stiff-
ness define the formation and
turnover of the adhesions to the
extracellular matrix and determine
the speed of migration as well as
cell shape and ability to differenti-
ate (Engler et al., 2006). Loss of
force sensing accompanies adhe-
sive and migratory defects in cul-
ture and in situ, including onco-
genic transformation and cancer
metastases, closely correlated
with the ability of cells for sub-
strate-independent growth (Kedrin
et al., 2007; Yamaguchi and Con-
deelis, 2007).
A special type of force sensing is

related to shear stress due to the
application of external mechanical
force onto the migrating or sta-
tionary cells. Such force can be
applied via blood flow over the en-
dothelial cells lining the blood ves-
sels, or via muscle contraction
onto the cells within the muscle
tissue. Overall, cellular responses
to mechanical signals are esti-
mated to have major influence on
their behavior in culture and in tis-
sues.
Force is transduced through ad-

hesion sites via the actin cytoskel-
eton and results in major signaling
changes that define cell shape,
polarization, and the entire com-
plexity of the motility events
(Dobereiner et al., 2005; Georges
and Janmey, 2005). Stretch
applied on a cell due to external
mechanical force or attachment to
the stiffer substrates affects actin
near the adhesion site and is fol-
lowed by recruitment of adhesion
complex proteins and global cytos-
keletal rearrangements (Galbraith
et al., 2002; Riveline et al., 2001).
Multiple actin-binding proteins at
the cell adhesion sites directly
respond to substrate rigidity
(overviewed in Dobereiner et al.,
2005), resulting in changes to all
steps of the migration cycle and all
of the structural and signaling
molecules involved (Gunzer et al.,
2000; Knight et al., 2000; Beningo
et al., 2004; Bhadriraju et al.,
2007).

Cell–Cell Adhesion

Cell–cell adhesions have an im-
portant role in tissue morphogene-
sis and are critical for the formation
of interconnected cell layers, such
as epithelial sheets (Gilbert, 2000).
Although such layers have only lim-
ited migratory capacity, they
migrate jointly over short distances
during gastrulation and are capable
of short-distance migration with a
free edge later in development and
in adulthood during wound healing.
Cell–cell adhesions are critical for
maintaining the epithelial morphol-
ogy and enabling their proper in-
tissue behavior.
Cell–cell adhesion molecules are

also important for the migration of
cells of the mesenchymal morphol-
ogy. During migration through tis-
sues and layers of the developing
embryo, mesenchymal cells do not
incorporate into sheets and form
stable connections with each
other, but they are capable of
forming transient connections to
the stationary cells of the neigh-
boring layers and with each other
as they come into immediate prox-
imity. All of these connections par-
ticipate in modulating the paths
and speeds of migration via cell–
cell adhesion molecules, such as
cadherins and catenins that, like
integrins, regulate intracellular
signaling cascades by sensing the
environment. Information about
the regulation of mesenchymal cell
migration by cell–cell adhesion
molecules is so far limited to the
general mechanisms and signaling
pathways mediated by these mol-
ecules. For this reason, we do not
review these mechanisms in
detail, beyond mentioning the fact
that these mechanisms are likely
to participate in the in situ migra-
tion cycle.

CELL MIGRATION IN THE

DEVELOPING EMBRYO

Major Migratory Cell Types

Cell migration over short and
long distances plays a critical role
at all stages of development, from
gastrulation to the formation of an
adult organism (Gilbert, 2000).
From the migratory point of view,
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all embryonic cells are divided into
cells of the epithelial morphology
that form interconnected sheets
and mesenchymal cells that origi-
nate from different lineages and
migrate throughout the embryo as
independent units to contribute to
tissues and cell types throughout
the body.
Interconnected epithelial sheets

undergo short-range migration
during gastrulation, however, part
of this migration is driven not by
the movement of the sheet itself,
but by the repositioning of the
mesenchymal cells that define the
embryonic mesodermal layer.

Migration of epithelial sheets is an
important part in the development
of such organisms as fish and
amphibia that do not dramatically
increase in size during early devel-
opment. Overall, the migration of
epithelial sheets generally occurs
at a short range at very slow
speeds. Although such migration
is believed to be driven by differ-
ent signaling events compared to
the migration of the mesenchymal
cells (Locascio and Nieto, 2001), it
uses similar molecular mecha-
nisms.
Cells of the mesenchymal mor-

phology are responsible for most

migratory events that take place
during development (Table 1). In
general terms, mesenchymal cells
share the generic features of fibro-
blasts, which have been the classi-
cal model for studying cell migra-
tion in culture (Figs. 1 and 2), and
it is believed that different embry-
onic mesenchymal cells during
migration generally follow the
mechanisms described in the first
section of the review (Molyneaux
and Wylie, 2004; Gerthoffer,
2007; Pak et al., 2008) (Fig. 2).
A special type of migration takes

place during development and
patterning of the nervous system.

Figure 2. Migration of different cell types is driven by the same mechanisms. Top left, immunofluorescence image of a migrating
fibroblast stained with rhodamine-phalloidin to visualize actin filaments. Top right, close-up electron microscopy image of a plati-
num replica of the leading edge cytoskeletal network of a migrating fibroblast, similar to that shown on the left. Bottom left, immu-
nofluorescence image of neurite outgrowth and close-up image of a neuronal growth cone (boxed) illustrates the migration events
during neuritogenesis and the laying down of the nervous system. Bottom right, close-up electron microscopy image of a platinum
replica of the leading edge cytoskeletal network in a neuronal growth cone, similar to that shown on the left. Despite morphological
differences, variations in the amount of filopodia and the relative density of the actin cytoskeleton, the major structural features of
the leading edge, are similar in both cell types. Images in the top panels, bottom right panel, and the close-up of the neuronal
growth cone in the bottom left panel courtesy of Dr. T. M. Svitkina (University of Pennsylvania). Bars, 2 lm for immunofluorescence
images and 200 nm for the electron micrographs.
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Although during predifferentiation
stages neuronal precursors of the
neural crest lineage follow the
same migration mechanisms as
any other mesenchymal cells, af-
ter differentiation the neuronal cell
bodies eventually find stationary
positions within the developing
nervous system and only their
neurites continue to migrate
through tissues to reach their des-
tinations and form connections
with their effectors as part of the
mature nervous system. This
process can occur over consider-
able distances and with relatively
high speeds and constitute a
global and important part of devel-
opment. In humans, brain devel-
opment alone involves the laying
down of �1011 neurons, each
forming �1,000 connections with
other neurons (Williams and Her-
rup, 1988) and often traveling
over distances of more than one
meter, five orders of magnitude
larger than the size of the neuron
cell body. This migration, while
highly specialized and morphologi-
cally distinct, is believed to occur
by the same mechanisms as those
described earlier for other cell
types (Dent et al., 2007; Mongiu
et al., 2007; Pak et al., 2008,
Figs. 1 and 2). From the mecha-
nistic perspective, the growth
cone of each neurite is considered
a separate leading edge and gen-
erally follows the same mecha-
nisms as whole cells migrating
through tissues (Fig. 2).

Embryonic Migratory Events

Table 1 shows an overview of
the major migratory events that
take place during different stages
of development in a mouse. Most
of these migrations take part after
gastrulation and can be loosely di-
vided into global redistribution of
undifferentiated cells throughout
the embryo (days 7–15 inmouse de-
velopment) and local rearrange-
ments of differentiating cells into the
mature vascular and nervous system
(see Figs. 3 and4 formouse develop-
mental stages and migration path-
ways). Because the embryo contin-
ues to grow asmigration takes place,
both global and local migration can

occur over large distances and at rel-
atively high speeds.
Early embryonic migration is

dominated by cells of the neural
crest lineage (see Bronner-Fraser
et al., 1991; Fraser, 1991; Le
Douarin, 1983; Tucker, 2004, for
overview; Saint-Jeannet, 2006)
that are classified into several
types based on their origin and
destination in the embryo (Figs. 3
and 4 and Table 1). Cranial neural
crest cells originate from the head
and neck region and give rise to
cartilage, bone, cranial neurons,
glia, connective tissue of the face,
thymus, thyroid, teeth, bones of
the middle ear, and jaw (Serbed-
zija et al., 1992; Nagy et al.,
2003; Trainor, 2005; Hutson and
Kirby, 2007). Cardiac neural crest
cells originate from a similar head
and neck region and form cardiac
outflow tract as well as heart sep-
tae and parts of the venricular
myocardium (Jiang et al., 2000;
Brown and Baldwin, 2006; Hutson
and Kirby, 2007). Vagal and sacral
neural crest cells migrate from two
opposite sides to populate the
gastrointestinal system and differ-
entiate into the neurons that in-
nervate the digestive tract
(Durbec et al., 1996; Young and
Newgreen, 2001; Anderson et al.,
2006a). Trunk neural crest cells
migrate from the back of the
embryo to form sensory and sym-
pathetic neurons, adrenal gland,
Schwann cells, and pigment cells
of the skin (Nagy et al., 2003;
Hutson and Kirby, 2007).
In addition to the neural crest

cells, primordial germ cells also
migrate within the midrear area of
the embryo into the genital ridges.
This migration takes place over a
considerable period of time (five
embryonic days for a mouse
embryo, which constitutes approx-
imately quarter of the entire de-
velopment), and is believed to
occur in stages of rapid migration
followed by relatively stationary
periods (Molyneaux et al., 2001;
Molyneaux and Wylie, 2004). The
actual speed of this migration is
difficult to estimate, because as
the cells migrate, the embryo itself
continues to grow and increases

several times in size during the
migration process (Fig. 3). There-
fore, it is possible that primordial
germ cells actually migrate very
little, and instead ‘‘ride’’ the
expanding tissues to reach their
destination (Freeman, 2003).
Some sources refer to the posi-

tioning of the blood cell precursors
in the fetal liver and bone marrow
as a type of migration in embryo-
genesis. However, while individual
blood cells (e.g., macrophages)
are capable of active migration,
most of the embryonic repositioning
of the blood cell precursors occurs
by passive circulation through the
blood stream. For this reason, we
are not considering this type of
movement in the current review.
Duration of each type of migra-

tion and maximum distance
between origin and destination at
the end of each migratory event
can serve as a basis for an estima-
tion of the overall migration speed
of each cell type during different
embryonic events (Table 1). The
estimated speeds shown in Table
1 are based on the assumption
that cells of each lineage migrate
uniformly and continuously during
the appropriate stages; however,
for some lineages and cell types
(e.g., germ cells), it may not be
the case. Based on such estima-
tion, all types of migrating cells
can be classified into groups that
differ from each other by their
migration speeds. Sacral and most
of the vagal neural crest cells that
populate the digestive tract are
the fastest (migration speeds [80
lm/hr), while cranial, cardiac, and
trunk cells migrate at less than
half the speed (30–40 lm/hr),
suggesting that distinct mecha-
nisms within the body regulate the
speed of migration of these highly
similar cell types.
Different mechanisms of the

regulation of cell migration speeds,
acting jointly, or separately could
be envisioned. One mechanism
involves the creation of differential
extracellular matrix ‘‘pavement’’
for different migration pathways,
making paths of different stiffness,
composition, and density that
could tightly control the migration
speed. To regulate short ‘‘bursts’’
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of migration followed by relatively
stationary periods, signals may be
used that would switch the migra-
tion of certain cell types on and off

in coordination with other develop-
mental events.
Live observations of in situ

migration of labeled neural crest

tissue explants in chick embryos
suggested that over the periods of
observation, cells were able to
migrate faster than the estimates
shown in Table 1 for mouse cells,
on the order of 170 lm/hr (Kulesa
et al., 2000), arguing in favor of
the ‘‘short burst’’ hypothesis.
However, live imaging of neural
crest cell migration in mouse
ranged between cell populations
migrating at 30–40 and 84 lm/hr,
which is extremely close to our
calculations presented in Table 1
(Druckenbrod and Epstein, 2005;
Druckenbrod and Epstein, 2007),
arguing in favor of uniform, con-
tinuous migration. Overall, it is
likely that both mechanisms may
contribute to the regulation of cell
migration speeds in situ.
During the later stages of devel-

opment, global migratory events
of neuritogenesis and angiogene-
sis encompass the developing
embryo (Fig. 4) and drive tissue
rearrangements that continue af-
ter birth, and, in the case of neuri-
togenesis, into adulthood. Because
of the extensive duration of these
processes, it is difficult to estimate
their distances and speeds. How-
ever, because the molecular

Figure 3. Timing of the major migratory events in mouse embryogenesis in relation to the embryo growth. Letters and numbers on
the top denote days postcoitum. One millimeter scale bar of the same size is shown next to each embryo to enable the direct size
comparison. Boxed image shows an enlargement of the gastrula shown on top. The major migratory events corresponding to those
shown in Table 1 are written for the appropriate stages underneath. Images and sizes are adapted from Kaufman (1992) and have
been used as the basis for the calculation of migration distances shown in Table 1.

Figure 4. Pathways of neural crest migration, neuritogenesis, and angiogenesis dur-
ing mouse development. Neural crest cells (left) generally migrate from the back area
of the embryo, originating from different somite regions at different embryonic stages
as listed in Table 1. Large green arrows in the head area denote cranial neural crest;
blue arrow, cardiac neural crest; black, vagal neural crest; orange arrow, sacral neu-
ral crest; and thin red arrows; trunk neural crest. Neurites and blood vessels sprout
from the structures laid out during earlier stages of development and reach to all the
areas of the mature organism along the pathways illustrated on the right hand image.
Illustrations were prepared by O. Karengina based on an image of a mouse embryo at
E13.5.
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mechanisms that drive these mi-
gratory events are similar for dif-
ferent cell types (Gerthoffer,
2007; Pak et al., 2008), the order
of magnitude of these migration
speeds is expected to be similar to
those observed at the earlier em-
bryonic stages. It seems likely
that angiogenesis and neuritogen-
esis do not occur continuously
with constant speeds, but are
modulated in response to the type
and availability of matrices and
external signals from the neigh-
boring cells and tissues.

MIGRATION-DEPENDENT

DEVELOPMENTAL DEFECTS

Key Cell Migration Components
in Mouse Embryogenesis

Because all cell types during em-
bryonic migration use similar mo-
lecular mechanisms, perturbation
of the key players in these mecha-
nisms is expected to lead to dras-
tic developmental defects. Over
the years, numerous data on
mouse knockouts of cell migration
components have been accumu-
lated (Table 2). Analysis of these
data and comparison of defects
that develop in response to each
gene knockout provide evidence of
the unique mechanisms whose
perturbation results in early lethal-
ity, and those mechanisms that
are either cell type specific or can
be compensated by the function of
different genes.
Table 2 summarizes the current

data on mouse knockouts of the
intra- and extracellular compo-
nents that are directly relevant to
the cell migration mechanisms
outlined earlier. These data are
grouped by functions and sepa-
rated into sections based on their
role at different migration stages.
Actin cytoskeleton proteins play
an important role in all of the me-
chanical steps of the migration
cycle, while focal adhesion pro-
teins, integrins, and components
of the extracellular matrix pre-
dominantly participate in adhesion
and retraction. In addition, knock-
outs of some of the regulatory
molecules directly involved in the
regulation of the mechanistic com-

ponents of cell migration have
been described and are listed sep-
arately in the table. Knockouts of
other regulatory molecules, such
as PI3K and PTEN, have also been
characterized (Di Cristofano et al.,
1998; Stambolic et al., 2000;
Katso et al., 2001; Jou et al.,
2002; Suzuki et al., 2003), but
are too general to be implicated
directly in migration and have
therefore been removed from our
list.
A separate body of literature

concerns tissue signaling mole-
cules and growth factors, as well
as transcription factors that regu-
late cell migration and coordinate
global developmental migratory
events (see Gilbert, 2000, for an
overview; Chi and Epstein, 2002;
Alva and Iruela-Arispe, 2004;
Gruber and Epstein, 2004; Hof-
mann and Iruela-Arispe, 2007,
High and Epstein, 2008; for some
recent reviews). Because these
knockouts do not directly affect
the intracellular events of the cell
migration cycle, they were not
included in the tables or discussion
of the current review.
As seen in Table 2, certain

knockouts lead to early embryonic
lethality (e.g., b actin or tropo-
myosin), suggesting that these
proteins play a universal role in
multiple embryonic events. Other
knockouts result in organ-specific
phenotypes (cardiac defects, pla-
centa, neuritogenesis, or vascular
patterning), suggesting that these
genes either play a tissue-specific
role or their function can be com-
pensated for by similar molecules
leading to normal, or seminormal
development of the tissues, in
which migration plays a less criti-
cal role. Analysis of these pheno-
types provides insights into the
underlying molecular reasons for
birth defects and may allow us to
predict major functional roles for
proteins, whose functions have
not been well established. An
example of such a protein is argi-
nyltransferase, Ate1, whose
knockout in mice results in embry-
onic lethality with specific defects
in heart development and angio-
genesis that suggest that this
gene and the corresponding post-

translational modification plays a
critical role in cell migration in situ
(Kwon et al., 2002). In agreement
with that, Ate1 has been recently
shown to regulate actin cytoskele-
ton, lamella formation, and lamel-
lipodial protrusion (Karakozova
et al., 2006); however, the exact
role of Ate1 in embryogenesis and
cell motility remains to be uncov-
ered.

Cell Migration and Human
Disease

The data presented earlier dem-
onstrate the critical importance of
cell migration to embryonic devel-
opment. Not surprisingly, pertur-
bations of migration can lead to
severe disorders with direct rele-
vance to human survival and
health. Cancer, the second leading
cause of death in the developed
countries worldwide, is character-
ized by impaired attachment of
cells to the matrix and perturba-
tion of the cell migratory mecha-
nisms (see Yamaguchi et al., 2005
for an overview).
On the developmental level, a

number of human diseases and
congenital disorders have been
associated with defects in cell
migration. Heart septation defects
(ventricular and atrial septal
defects, and persistent truncus
arteriosus, abbreviated as VSD,
ASD, and PTA, respectively), asso-
ciated with the defects of migra-
tion of the cardiac neural crest
cells (Table 1), are among the
most highly occurring human con-
genital heart defects. DiGeorge
syndrome, characterized by heart
defects, craniofacial abnormalities,
and severe retardation, has been
linked to chromosome deletions
that result in migratory defects of
the neural crest cells (Epstein,
2001; Gitler et al., 2002; Epstein
and Parmacek, 2005; Hutson and
Kirby, 2007; Stoller and Epstein,
2005). Hirschsprung’s disease,
characterized by impaired bowel
movement, is related to defects in
migration of the vagal and sacral
neural crest lineages that populate
the gastrointestinal system and
subsequently differentiate into the
neurons responsible for gut inner-
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vation (Tucker, 2004; Heanue and
Pachnis, 2007; Amiel et al.,
2008). Waardenburg’s syndrome,
characterized by abnormal pig-
mentation, results from the
impaired migration of neural crest
cells that give rise to the melano-
cytes of the skin (Tachibana et al.,
2003; Tucker, 2004). Other
human syndromes, including Ala-
gille, Carpenter, CHARGE, Ive-
mark, and Leopard/Noonan syn-
dromes, result in abnormalities
that suggest impairments of the
neural crest migration, with known
or unknown molecular reasons
(Hutson and Kirby, 2003).
Increasing molecular understand-
ing of the embryonic migratory
mechanisms provides means for
the development of new therapies
for these diseases in humans.

CONCLUSIONS

Cell migration is a highly con-
served mechanism that is critical
for normal embryonic develop-
ment and the functioning of an
adult organism. Despite the differ-
ences between cell types and line-

ages that undergo migration, all
cells migrate by similar mecha-
nisms, whose perturbation leads
to severe developmental defects.
These mechanisms involve intri-
cate molecular machines that can
sense the environment, respond
to signals, and modulate the entire
cell behavior. Molecular machines
driving migration have a cytoskel-
eton-based ‘‘mechanical drive’’
and the regulatory molecules that
provide direction and determine
the migration speed.
A big question that has con-

cerned the researchers for deca-

des relates to the coordination of
cell migration in situ and its rela-
tion to the intracellular aspects of
the cell migratory mechanisms.
Indeed, all cells migrate by similar
mechanisms, yet in a developing
organism they migrate along
highly specified paths with differ-
ent speeds that can vary by orders
of magnitude for different cell
types (Table 1). Traditionally, this
question has been addressed by
researchers that considered the
intra- and extracellular mecha-
nisms driving migration in sepa-
rate sets of studies. As more data

accumulate, researchers are now
able to integrate all of the avail-
able information and consider the
intracellular mechanisms of cell
migration in the context of the
developing organisms that contain
additional levels of complexity pro-
vided by extracellular regulation.
This synthesis of the existing and
emerging data would eventually
enable us to understand the com-
plexity and the mystery of cell
migration during development.

Note on References

Because the current review con-
tains a very broad overview of
several extensive fields, we have
tried, where possible, to cite
recent reviews on the appropriate
subjects rather than original
papers. We apologize to these
authors whose very important
articles were not included in our
reference list due to space con-
straints.

Note on Nomenclature

In the two fields overviewed
here, different conventions have
been in place to define in vitro and
in vivo studies. In cell biology, in
vitro is usually related to the bio-
chemical tests done in a cell-free
system or with purified proteins,
while in vivo defines studies of liv-
ing cells in culture. In develop-
mental biology, in vitro usually
refers to cells and tissue explants
in culture, and in vivo is used to
describe studies in a living
embryo. To side-step these con-
ventions, we used ‘‘in culture’’
when referring to cultured cells
and in situ when referring to cells
in an embryo.
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